Anisotropic 3D‐Printed Carbon Fiber‐Reinforced Liquid Metal Elastomer for Synergistic Enhancement of Electrical Conductivity, Thermal Performance, and Leakage Resistance

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaohui Shan, Sen Chen, Weichen Feng, Xiyu Zhu, Bo Wang, Xudong Zhang, Ruizhi Yuan, Jianye Gao, Ziliang Cui, Hanchi Xu, Xin Liao, Bingjie Wu, Jing Liu
{"title":"Anisotropic 3D‐Printed Carbon Fiber‐Reinforced Liquid Metal Elastomer for Synergistic Enhancement of Electrical Conductivity, Thermal Performance, and Leakage Resistance","authors":"Xiaohui Shan, Sen Chen, Weichen Feng, Xiyu Zhu, Bo Wang, Xudong Zhang, Ruizhi Yuan, Jianye Gao, Ziliang Cui, Hanchi Xu, Xin Liao, Bingjie Wu, Jing Liu","doi":"10.1002/adma.202511498","DOIUrl":null,"url":null,"abstract":"Developing multifunctional composites with high electrical/thermal conductivity and excellent flexibility remains a critical challenge for flexible electronics and thermal management systems. While liquid metal elastomers offer intrinsic softness and conductivity, their real‐world application is hindered by the trade‐off between outstanding dual conductivity (electrical and thermal) and leakage resistance. To tackle this issue, high‐stability carbon fiber‐reinforced liquid metal elastomer (CFLME) is fabricated via an integrated method: Ni plating on carbon fiber to enhance reactive wetting with liquid metal, followed by composite formation with elastomer and 3D printing for directional fiber alignment, yielding anisotropic CFLME. Such anisotropic architecture enables efficient conductive pathways along fiber axes, reducing the electrical percolation threshold to 25%, achieving a high electrical conductivity of 3.44 × 10⁵ S/m, and a thermal conductivity of 7.26 W/(m∙K). The fiber network securely locks liquid metal, enabling zero leakage under 400% strain, 1000‐cycle stretching, or 833 kPa compression. For practical applications, CFLME exhibits exceptional electromagnetic shielding (93.74 dB), high‐sensitivity biosensing with an 82.62 dB signal‐to‐noise ratio, and efficient thermal management (16 °C reduction vs liquid metal elastomer). This work demonstrates a dual‐innovation strategy of structural design and interfacial regulation, providing a robust solution for flexible electronics and thermal management applications with balanced performance.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"121 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202511498","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing multifunctional composites with high electrical/thermal conductivity and excellent flexibility remains a critical challenge for flexible electronics and thermal management systems. While liquid metal elastomers offer intrinsic softness and conductivity, their real‐world application is hindered by the trade‐off between outstanding dual conductivity (electrical and thermal) and leakage resistance. To tackle this issue, high‐stability carbon fiber‐reinforced liquid metal elastomer (CFLME) is fabricated via an integrated method: Ni plating on carbon fiber to enhance reactive wetting with liquid metal, followed by composite formation with elastomer and 3D printing for directional fiber alignment, yielding anisotropic CFLME. Such anisotropic architecture enables efficient conductive pathways along fiber axes, reducing the electrical percolation threshold to 25%, achieving a high electrical conductivity of 3.44 × 10⁵ S/m, and a thermal conductivity of 7.26 W/(m∙K). The fiber network securely locks liquid metal, enabling zero leakage under 400% strain, 1000‐cycle stretching, or 833 kPa compression. For practical applications, CFLME exhibits exceptional electromagnetic shielding (93.74 dB), high‐sensitivity biosensing with an 82.62 dB signal‐to‐noise ratio, and efficient thermal management (16 °C reduction vs liquid metal elastomer). This work demonstrates a dual‐innovation strategy of structural design and interfacial regulation, providing a robust solution for flexible electronics and thermal management applications with balanced performance.
各向异性3D打印碳纤维增强液态金属弹性体,协同增强电导率、热性能和防泄漏性能
开发具有高导电性/导热性和优异柔韧性的多功能复合材料仍然是柔性电子和热管理系统的关键挑战。虽然液态金属弹性体具有固有的柔软性和导电性,但它们在现实世界中的应用受到杰出的双导电性(电和热)和防漏性之间的权衡的阻碍。为了解决这个问题,高稳定性碳纤维增强液态金属弹性体(CFLME)是通过一种集成方法制造的:在碳纤维上镀镍以增强液态金属的反应润湿性,然后与弹性体形成复合材料并进行3D打印以实现定向纤维排列,从而产生各向异性的CFLME。这种各向异性的结构使得沿光纤轴的导电路径有效,将电渗透阈值降低到25%,实现了3.44 × 10 5 S/m的高电导率和7.26 W/(m∙K)的热导率。光纤网络可以安全地锁定液态金属,在400%应变、1000循环拉伸或833 kPa压缩下实现零泄漏。在实际应用中,CFLME具有出色的电磁屏蔽(93.74 dB),高灵敏度的生物传感(82.62 dB信噪比)和高效的热管理(与液态金属弹性体相比降低16°C)。这项工作展示了结构设计和界面调节的双重创新策略,为具有平衡性能的柔性电子和热管理应用提供了强大的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信