Alain Dejean, Vivien Rossi, Arthur Compin, Bruno Corbara, James M. Carpenter, Jérôme Orivel, Frédéric Petitclerc, Benoit Burban, Frédéric Azémar
{"title":"Rainfall during multiyear La Niñas caused the decline of social wasps in Northeastern Amazonia","authors":"Alain Dejean, Vivien Rossi, Arthur Compin, Bruno Corbara, James M. Carpenter, Jérôme Orivel, Frédéric Petitclerc, Benoit Burban, Frédéric Azémar","doi":"10.1002/ecy.4433","DOIUrl":"10.1002/ecy.4433","url":null,"abstract":"<p>Greenhouse gases released into the atmosphere have triggered climate change worldwide resulting in higher average temperatures and a greater frequency of warm El Niño and cold La Niña events known as the El Niño Southern Oscillation (ENSO) (Geng et al., <span>2023</span>; for ENSO values see Null, <span>2024</span>). In northeastern Amazonia, including French Guiana, weather data compiled over the past 30 years show that La Niña years are correlated with extreme episodes of rainfall, lower temperatures, and less solar radiation (Dejean et al., <span>2011</span>; see also Gaucherel, <span>2004</span>; Ponton, <span>2001</span>).</p><p>The excessive rainfall of the exceptionally long and strong 1998–2001 La Niña event (34 months) caused a major decrease in Guianese wasp diversity with 70.5% of the species no longer recorded (Appendix S1: Figure S1; Table S1). Because we noted a similarity between the outcomes of all social wasps pooled and that of <i>Polybia bistriata</i> (Polistinae), this species served as a biological indicator on global change in French Guiana when associated with <i>Clusia grandiflora</i> (Clusiaceae) whose large and thick leaves protect the wasps' nests from inclement weather (Figure 1) (Corbara et al., <span>2009</span>; Dejean et al., <span>2010</span>, <span>2011</span>, <span>2022</span>).</p><p>Here, we capitalized on a second very long La Niña episode (July 2020–February 2023; 32 months) (Null, <span>2024</span>) to examine its impact on the <i>P. bistriata</i> nests. <i>Via</i> this biological indicator, we report the fate of social wasps in French Guiana over 27 years (1997–2023).</p><p>The area studied is situated along the road leading to the Petit-Saut dam (5°4′5″ N, 52°59′54″W–5°4′18″ N, 53°0′19″ W) where <i>Clusia</i> is one of the few plants able to grow on soil scraped down to the laterite, and so remains small. Thus, depending on the year, we monitored 93–149 <i>Clusia</i> for wasp nests each July between 1997 and 2023 to record individuals sheltering active <i>P. bistriata</i> nests in order to obtain percentages to be compared with climatic data from the Enerco405 AK automatic weather station at Paracou situated in the same forest 23.5 km from the area studied.</p><p>The best GLM model obtained, according to the AIC, contained three significant climatic variables: (1) El Niño years, (2) PRS > 2700, and (3) PDS > 300 with significant effects (<i>p</i> = 1.02e<sup>−3</sup>, <i>p</i> = 9.07e<sup>−5</sup>, <i>p</i> = 3.89e<sup>−4</sup>, respectively, Wald test). PRS > 2700 had a negative effect, while El Niño years and PDS > 300 had a positive effect on the number of <i>P. bistriata</i> nests (Figure 2b). The other climatic variables degraded the AIC and were not significant.</p><p>A time series analysis noted an increase in the mean level of wasp nests by 0.15 in 2009 that coincides with a weak La Niña and the beginning of the 2009–2010 El Niño event, and confirmed three declines, each occurring ","PeriodicalId":11484,"journal":{"name":"Ecology","volume":"105 11","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecy.4433","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142373879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alistair G. Auffret, Emma Ladouceur, Natalie S. Haussmann, Eirini Daouti, Tatiana G. Elumeeva, Ineta Kačergytė, Jonas Knape, Dorota Kotowska, Matthew Low, Vladimir G. Onipchenko, Matthieu Paquet, Diana Rubene, Jan Plue
{"title":"A global database of soil seed bank richness, density, and abundance","authors":"Alistair G. Auffret, Emma Ladouceur, Natalie S. Haussmann, Eirini Daouti, Tatiana G. Elumeeva, Ineta Kačergytė, Jonas Knape, Dorota Kotowska, Matthew Low, Vladimir G. Onipchenko, Matthieu Paquet, Diana Rubene, Jan Plue","doi":"10.1002/ecy.4438","DOIUrl":"10.1002/ecy.4438","url":null,"abstract":"<p>A soil seed bank is the collective name for viable seeds that are stored naturally in the soil. At the species or population level, the ability to form a seed bank represents a strategy for (re)colonization following a disturbance or other change in the local environmental conditions. At the community level, seed banks are thought to buffer local diversity during periods of environmental change and are often studied in relation to the potential for passive habitat restoration. The role that seed banks play in plant population and community dynamics, as well as their importance in the agricultural sector, means that they have been widely studied in ecological research. This database is the result of a comprehensive literature search, including all seed bank studies from the Web of Science from which data could be extracted, as well as an additional search of the Russian language literature. The database contains information on the species richness, seed density, and/or seed abundance in 3096 records from at least 1929 locations across the world's seven continents, extracted from 1442 studies published between 1940 and 2020. Records are grouped into five broad habitat categories (aquatic, arable, forest, grassland—including shrubland—and wetland), including information relating to habitat degradation from, or restoration to other habitats (total 14 combinations). Sampling protocols were also extracted for each record, and the database was extensively checked for errors. The location of each record was then used to extract summary climate data and biome classification from external published databases. The database has several potential uses. The large geographical spread relative to many other global biodiversity datasets is relevant for investigating patterns of diversity in biogeographical or macroecological contexts. Habitat type and status (intact, degraded, and restored) can be used to provide insights for biodiversity conservation, while the potential effects of sampling method and effort can be used to inform optimized data collection for future seed bank studies. This database is released under the CC-BY license.</p>","PeriodicalId":11484,"journal":{"name":"Ecology","volume":"105 11","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecy.4438","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Slower but deeper community change: Intrinsic dynamics regulate anthropogenic impacts on species temporal turnover","authors":"J. Christopher D. Terry, Axel G. Rossberg","doi":"10.1002/ecy.4430","DOIUrl":"10.1002/ecy.4430","url":null,"abstract":"<p>Understanding the mechanisms behind biodiversity dynamics is central to assessing and forecasting anthropogenic impacts on ecological communities. However, the manner in which external environmental drivers act in concert with intrinsic ecological processes to influence local temporal turnover is currently largely unexplored. Here, we determine how human impacts affect multiple metrics of bird community turnover to establish the ecological mechanisms behind compositional change. We used US Breeding Bird Survey data to calculate transect-level rates of three measures of temporal species turnover: (1) “short-term” (initial rate of decline of Sørensen similarity), (2) “long-term” (asymptotic Sørensen similarity), and (3) “throughput” (overall species accumulation rate from species–time relationship exponents) over 2692 transects across 27 regional habitat types. We then hierarchically fit linear models to estimate the effect of anthropogenic impact on these turnover metrics, using the Human Modification Index proxy, while accounting for observed species richness, the size of the species pool, and annual environmental variability. We found broadly consistent impacts of increased anthropogenic pressures across diverse habitat types. The Human Modification Index was associated with greater turnover at long timescales, but marginally slower short-term turnover. The species “throughput” (accumulation rate) was not notably influenced. Examining anthropogenic impacts on different aspects of species turnover in combination allows greater ecological insight. Observed human impacts on short-term turnover were the opposite of existing expectations and suggest humans are disrupting the background turnover of these systems, rather than simply driving rapid directed turnover. The increased long-term turnover without concurrent increases in species accumulation implies human impacts lead to shifts in species occurrence frequency rather than simply greater arrival of “new” species. These results highlight the role of intrinsic dynamics and caution against simple interpretations of increased species turnover as reflections of environmental change.</p>","PeriodicalId":11484,"journal":{"name":"Ecology","volume":"105 11","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecy.4430","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142368010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matthew E. S. Bracken, Genevieve Bernatchez, Alexander J. Badten, Rachel A. Chatfield
{"title":"Unraveling the multiple facilitative effects of consumers on marine primary producers","authors":"Matthew E. S. Bracken, Genevieve Bernatchez, Alexander J. Badten, Rachel A. Chatfield","doi":"10.1002/ecy.4439","DOIUrl":"10.1002/ecy.4439","url":null,"abstract":"<p>The loss of consumers threatens the integrity of ecological systems, but the mechanisms underlying the effects on communities and ecosystems remain difficult to predict. This is, in part, due to the complex roles that consumers play in those systems. Here, we highlight this complexity by quantifying two mechanisms by which molluscan grazers—typically thought of as consumers of their algal resources—facilitate algae on rocky shores. Initial observations in high-zone tide pools revealed that both water-column ammonium concentrations and photosynthetic biomass were higher in pools containing higher densities of grazers, suggesting that local-scale nutrient recycling by the grazers could be enhancing algal biomass. We assessed this possibility by experimentally manipulating grazer abundances at the level of whole tide pools but controlling access of those grazers to experimental plots within each pool. Contrary to predictions that algal biomass inside grazer exclusions would increase as grazer abundances in the pools increased, we found that algal biomass inside grazer-exclusion fences was unaffected by grazer abundances. Instead, the consumptive effects of grazers that were evident at low grazer abundances transitioned to facilitative effects as experimentally manipulated grazer abundances increased. This finding suggested that these positive interactions were associated with the physical presence of grazers and not just grazers' effects on nutrient availability. Subsequent experiments highlighted the potential role of “slime”—the pedal mucous trails left behind as the mollusks crawl on the substratum—in promoting the recruitment of algae and thereby mediating a spatial subsidy of new organic matter into the system. Furthermore, different grazer groups contributed disproportionately to ammonium excretion (i.e., turban snails) versus slime production (i.e., littorine snails), suggesting a potential role for grazer diversity. Our work highlights the complex ways in which consumers affect their resources, including multiple, complementary mechanisms by which these grazers facilitate the algae they consume.</p>","PeriodicalId":11484,"journal":{"name":"Ecology","volume":"105 11","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecy.4439","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142368011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kenneth J. Anderson, John S. Kominoski, Chang Jae Choi, Ulrich Stingl
{"title":"Functional effects of subsidies and stressors on benthic microbial communities along freshwater to marine gradients","authors":"Kenneth J. Anderson, John S. Kominoski, Chang Jae Choi, Ulrich Stingl","doi":"10.1002/ecy.4427","DOIUrl":"10.1002/ecy.4427","url":null,"abstract":"<p>Leaf litter in coastal wetlands lays the foundation for carbon storage, and the creation of coastal wetland soils. As climate change alters the biogeochemical conditions and macrophyte composition of coastal wetlands, a better understanding of the interactions between microbial communities, changing chemistry, and leaf litter is required to understand the dynamics of coastal litter breakdown in changing wetlands. Coastal wetlands are dynamic systems with shifting biogeochemical conditions, with both tidal and seasonal redox fluctuations, and marine subsidies to inland habitats. Here, we investigated gene expression associated with various microbial redox pathways to understand how changing conditions are affecting the benthic microbial communities responsible for litter breakdown in coastal wetlands. We performed a reciprocal transplant of leaf litter from four distinct plant species along freshwater-to-marine gradients in the Florida Coastal Everglades, tracking changes in environmental and litter biogeochemistry, as well as benthic microbial gene expression associated with varying redox conditions, carbon degradation, and phosphorus acquisition. Early litter breakdown varied primarily by species, with highest breakdown in coastal species, regardless of the site they were at during breakdown, while microbial gene expression showed a strong seasonal relationship between sulfate cycling and salinity, and was not correlated with breakdown rates. The effect of salinity is likely a combination of direct effects, and indirect effects from associated marine subsidies. We found a positive correlation between sulfate uptake and salinity during January with higher freshwater inputs to coastal areas. However, we found a peak of dissimilatory sulfate reduction at intermediate salinity during April when freshwater inputs to coastal sites are lower. The combination of these two results suggests that sulfate acquisition is limiting to microbes when freshwater inputs are high, but that when marine influence increases and sulfate becomes more available, dissimilatory sulfate reduction becomes a key microbial process. As marine influence in coastal wetlands increases with climate change, our study suggests that sulfate dynamics will become increasingly important to microbial communities colonizing decomposing leaf litter.</p>","PeriodicalId":11484,"journal":{"name":"Ecology","volume":"105 11","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecy.4427","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Evan G. Hockridge, Ella M. Bradford, Katherine I. W. Angier, Beatrice H. Youd, Elijah B. M. McGill, Sylvain Y. Ngouma, Roger L. Ognangue, Gwili E. M. Gibbon, Andrew B. Davies
{"title":"Spatial ecology, biodiversity, and abiotic determinants of Congo's bai ecosystem","authors":"Evan G. Hockridge, Ella M. Bradford, Katherine I. W. Angier, Beatrice H. Youd, Elijah B. M. McGill, Sylvain Y. Ngouma, Roger L. Ognangue, Gwili E. M. Gibbon, Andrew B. Davies","doi":"10.1002/ecy.4419","DOIUrl":"10.1002/ecy.4419","url":null,"abstract":"<p>Canopy gaps are foundational features of rainforest biodiversity and successional processes. The bais of Central Africa are among the world's largest natural forest clearings and thought to be critically important islands of open-canopy habitat in an ocean of closed-canopy rainforest. However, while frequently denoted as a conservation priority, there are no published studies on the abundance or distribution of bais across the landscape, nor on their biodiversity patterns, limiting our understanding of their ecological contribution to Congolese rainforests. We combined remote sensing and field surveys to quantify the abundance, spatial distribution, shape, size, biodiversity, and soil properties of bais in Odzala-Kokoua National Park (OKNP), Republic of the Congo (hereafter, Congo). We related bai spatial distribution to variation in hydrology and topography, compared plant community composition and 3D structure between bais and other open ecosystems, quantified animal diversity from camera traps, and measured soil moisture content in different bai types. We found bais to be more numerous than previously thought (we mapped 2176 bais in OKNP), but their predominantly small size (80.7% of bais were <1 ha), highly clustered distribution, and restriction to areas of low topographic position make them a rare riparian habitat type. We documented low plant community and structural similarity between bai types and with other open ecosystems, and identified significant differences in soil moisture between bai and open ecosystem types. Our results demonstrate that two distinct bai types can be differentiated based on their plant and animal communities, soil properties, and vegetation structure. Taken together, our findings provide insights into how bais relate to other types of forest clearings and on their overall importance to Congolese rainforest ecosystems.</p>","PeriodicalId":11484,"journal":{"name":"Ecology","volume":"105 11","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142335078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tom P. Fairchild, Bettina Walter, Joshua J. Mutter, John N. Griffin
{"title":"Topographic heterogeneity triggers complementary cascades that enhance ecosystem multifunctionality","authors":"Tom P. Fairchild, Bettina Walter, Joshua J. Mutter, John N. Griffin","doi":"10.1002/ecy.4434","DOIUrl":"10.1002/ecy.4434","url":null,"abstract":"<p>Topographic heterogeneity sets the stage for community assembly, but its effects on ecosystem functioning remain poorly understood. Here, we test the hypothesis that topographic heterogeneity underpins multiple cascading species interactions and functional pathways that indirectly control multifunctionality. To do so, we combined experimental manipulation of a form of topographic heterogeneity on rocky shores (holes of various sizes) with a comprehensive assessment of naturally assembled communities and multifunctionality. Structural equation modeling indicated that heterogeneity: (1) enhanced biodiversity by supporting filter feeder richness; (2) triggered a facilitation cascade via reef-forming (polychaete) and biomass-dominant (macroalga) foundation species, which in turn broadly supported functionally diverse epibiotic and understory assemblages; and (3) inhibited a key consumer (limpet). The model supported that these mechanisms exerted complementary positive effects on individual functions (e.g., water filtration, ecosystem metabolism, nutrient uptake) and, in turn, collectively enhanced multifunctionality. Topographic heterogeneity may therefore serve as a cornerstone physical attribute by initiating multiple cascades that propagate through ecological communities via foundation species, ultimately manifesting disproportionate effects on ecosystem multifunctionality.</p>","PeriodicalId":11484,"journal":{"name":"Ecology","volume":"105 11","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecy.4434","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Patricia Kaye T. Dumandan, Juniper L. Simonis, Glenda M. Yenni, S. K. Morgan Ernest, Ethan P. White
{"title":"Transferability of ecological forecasting models to novel biotic conditions in a long-term experimental study","authors":"Patricia Kaye T. Dumandan, Juniper L. Simonis, Glenda M. Yenni, S. K. Morgan Ernest, Ethan P. White","doi":"10.1002/ecy.4406","DOIUrl":"10.1002/ecy.4406","url":null,"abstract":"<p>Ecological forecasting models play an increasingly important role for managing natural resources and assessing our fundamental knowledge of processes driving ecological dynamics. As global environmental change pushes ecosystems beyond their historical conditions, the utility of these models may depend on their transferability to novel conditions. Because species interactions can alter resource use, timing of reproduction, and other aspects of a species' realized niche, changes in biotic conditions, which can arise from community reorganization events in response to environmental change, have the potential to impact model transferability. Using a long-term experiment on desert rodents, we assessed model transferability under novel biotic conditions to better understand the limitations of ecological forecasting. We show that ecological forecasts can be less accurate when the models generating them are transferred to novel biotic conditions and that the extent of model transferability can depend on the species being forecast. We also demonstrate the importance of incorporating uncertainty into forecast evaluation with transferred models generating less accurate and more uncertain forecasts. These results suggest that how a species perceives its competitive landscape can influence model transferability and that when uncertainties are properly accounted for, transferred models may still be appropriate for decision making. Assessing the extent of the transferability of forecasting models is a crucial step to increase our understanding of the limitations of ecological forecasts.</p>","PeriodicalId":11484,"journal":{"name":"Ecology","volume":"105 11","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Timothy J. Fernandes, Reilly O'Connor, Kevin S. McCann, Brian J. Shuter, Bailey C. McMeans
{"title":"Ephemeral piscivory in a mesopredator sunfish: Implications for pond food webs","authors":"Timothy J. Fernandes, Reilly O'Connor, Kevin S. McCann, Brian J. Shuter, Bailey C. McMeans","doi":"10.1002/ecy.4431","DOIUrl":"10.1002/ecy.4431","url":null,"abstract":"<p>Warm-water fishes are expanding northward rapidly across North America (Wu et al., <span>2023</span>), reshaping previously naïve north-temperate freshwater food webs (Vander Zanden et al., <span>1999</span>). In north-temperate lakes, large centrarchids (i.e., sunfishes) can drive declines in prey fish diversity and abundance and affect the foraging behavior of mesopredator fishes (e.g., introducing a landscape of “fear” that may restrict trophic breadth; Falkegård et al., <span>2023</span>). However, in pond systems where large predators are generally absent, we know relatively little about mesopredator ecology and food web interactions. Examining the ecological roles of mesopredators in ecosystems that lack large top predator species may reveal insights into their capacity to fill top predator niches (i.e., mesopredator release hypothesis). Yet, existing knowledge of mesopredator fish ecology is largely based on data collected in lakes, with limited work considering their potential role as top predators in pond ecosystems (Copp et al., <span>2017</span>; Fox & Keast, <span>1990</span>).</p><p>To better document the seasonal ecology of mesopredator fish populations across a range of pond habitats (Figure 1), we sampled four pond populations of pumpkinseed sunfish (<i>Lepomis gibbosus</i>) in Southern Ontario, Canada, biweekly from January to August (<i>N</i> = 763; Appendix S1: Table S1). Pumpkinseed sunfish are small, vibrantly colored centrarchids that are largely regarded as generalist mesopredators, consuming a range of dipterans, mollusks, gastropods, and pelagic zooplankton (Scott & Crossman, <span>1998</span>). This capacity for diverse resource polymorphisms combined with broad oxythermal preferences allows pumpkinseed to inhabit a range of aquatic habitats, from small ponds to the Great Lakes (Copp et al., <span>2017</span>; Scott & Crossman, <span>1998</span>), while also being among the most rapidly expanding fish species in Ontario (Wu et al., <span>2023</span>). To investigate seasonality in trophic interactions, pumpkinseed were sampled and dissected for diet analysis; it was during these dissections that we documented a unique seasonal interaction between pumpkinseed and small-bodied fishes. During late spring and summer months, pumpkinseed exhibited extensive seasonal piscivory in three of the four sampled ponds (Figure 1), consuming brook stickleback <i>Culaea inconstans</i>, fathead minnow <i>Pimephales pimelas</i>, northern redbelly dace <i>Chromosomus eos</i>, and young-of-the-year (YOY) pumpkinseed. According to the index of relative importance (Appendix S2: Equation S1; Hart et al., <span>2002</span>), fish became the most important diet item in Pond B and Pond C; though to a lesser extent, fish also emerged as an important prey category in Pond A (Appendix S1: Figure S1). The only pond where piscivory was not observed (Pond D) was also the only pond that contained a piscivorous predator (largemouth bass <i>","PeriodicalId":11484,"journal":{"name":"Ecology","volume":"105 11","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecy.4431","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142335075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
William H. Ellsworth, Scott D. Peacor, Richard B. Chandler, L. Mike Conner, Elina P. Garrison, Karl V. Miller, Michael J. Cherry
{"title":"Measuring the benefit of a defensive trait: Vigilance and survival probability","authors":"William H. Ellsworth, Scott D. Peacor, Richard B. Chandler, L. Mike Conner, Elina P. Garrison, Karl V. Miller, Michael J. Cherry","doi":"10.1002/ecy.4429","DOIUrl":"10.1002/ecy.4429","url":null,"abstract":"<p>Defensive traits are hypothesized to benefit prey by reducing predation risk from a focal predator but come at a cost to the fitness of the prey. Variation in the expression of defensive traits is seen among individuals within the same population, and in the same individual in response to changes in the environment (i.e., phenotypically plastic responses). It is the relative magnitude of the cost and benefit of the defensive trait that underlies the defensive trait expression and its consequences to the community. However, whereas the cost has received much attention in ecological research, the benefit is seldom examined. Even in a defensive trait as extensively studied as vigilance, there are few studies of the purported benefit of the behavior, namely that vigilance enhances survival. We examined whether prey vigilance increased survival and quantified that benefit in a natural system, with white-tailed deer (<i>Odocoileus virginianus</i>) experiencing unmanipulated levels of predation risk from Florida panther (<i>Puma concolor coryi</i>). Deer that spent more time vigilant (as measured by head position using camera trap data) had a higher probability of survival. Indeed, an individual deer that was vigilant 75% of the time was more than three times as likely to be killed by panthers over the course of a year than a deer that was vigilant 95% of the time. Our results therefore show that within-population variation in the expression of a defensive trait has profound consequences for the benefit it confers. Our results provide empirical evidence supporting a long-held but seldom-tested hypothesis, that vigilance is a behavior that reduces the probability of predation and quantifies the benefit of this defensive trait. Our work furthers an understanding of the net effects of a trait on prey fitness and predator–prey interactions, within-population variation in traits, and predation risk effects.</p>","PeriodicalId":11484,"journal":{"name":"Ecology","volume":"105 11","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142335077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}