{"title":"Maps generating normals on a manifold","authors":"K. Polyakova","doi":"10.5922/0321-4796-2019-50-13","DOIUrl":"https://doi.org/10.5922/0321-4796-2019-50-13","url":null,"abstract":"The first- and second-order canonical forms are considered on a smooth m-manifold. The approach connected with coordinate expressions of basic and fiber forms, and first- and second-order tangent vectors on a manifold is implemented. It is shown that the basic first- and secondorder tangent vectors are first- and second-order Pfaffian (generalized) differentiation operators of functions set on a manifold. Normals on a manifold are considered. Differentials of the basic first-order (second-order) tangent vectors are linear maps from the first-order tangent space to the second-order (third-order) tangent space. Differentials of the basic first-order tangent vectors (basic vectors of the first-order normal) set a map which takes a first-order tangent vector into the second-order normal for the first-order tangent space of (into the third-order normal for second-order tangent space). The map given by differentials of the basic first-order tangent vectors takes all tangent vectors to the vectors of the second-order normal. Such splitting the osculating space in the direct sum of the first-order tangent space and second-order normal defines the simplest (canonical) affine connection which horizontal subspace is the indicated normal. This connection is flat and symmetric. The second-order normal is the horizontal subspace for this connection. Derivatives of some basic vectors in the direction of other basic vectors are equal to values of differentials of the first vectors on the second vectors, and the order of differentials is equal to the order of vectors along which differentiation is made. The maps set by differentials of basic vectors of r-order normal for (r – 1)-order tangent space take the basic first-order tangent vectors to the basic vectors of (r + 1)-order normal for r-order tangent space. Horizontal vectors for the simplest second-order connection are constructed. Second-order curvature and torsion tensors vanish in this connection. For horizontal vectors of the simplest second-order connection there is the decomposition by means of the basic vectors of the secondand third-order normals.","PeriodicalId":114406,"journal":{"name":"Differential Geometry of Manifolds of Figures","volume":"52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133458023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On conformal transformations of metrics of Riemannian paracomplex manifolds","authors":"S. Stepanov, I. Tsyganok, V. Rovenski","doi":"10.5922/0321-4796-2020-52-11","DOIUrl":"https://doi.org/10.5922/0321-4796-2020-52-11","url":null,"abstract":"A 2n-dimensional differentiable manifold M with -structure is a Riemannian almost paracomplex manifold. In the present paper, we consider conformal transformations of metrics of Riemannian paracomplex manifolds. In particular, a number of vanishing theorems for such transformations are proved using the Bochner technique.","PeriodicalId":114406,"journal":{"name":"Differential Geometry of Manifolds of Figures","volume":"154 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116835333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The composition equipment for congruence of hypercentred\u0000planes","authors":"A. Vyalova","doi":"10.5922/0321-4796-2019-50-8","DOIUrl":"https://doi.org/10.5922/0321-4796-2019-50-8","url":null,"abstract":"In n-dimensional projective space Pn a manifold Vnm , i. e., a congruence of hypercentered planes Pm , is considered. By a hypercentered planе Pm we mean m-dimensional plane with a (m – 1)-dimensional hyperplane Lm1 , distinguished in it. The first-order fundamental object of the congruence is a pseudotensor. The principal fiber bundle Gr (Vnm) is associated with the congruence, r n(n m1) m2. . The base of the bundle is the manifold Vnm and a typical fiber is the stationarity subgroup Gr of a centered plane Pm . In principal fiber bundle a fundamental-group connection is given using the field of the object Г . The composition equipment for the congruence is set by means of a point lying in the plane and not belonging to its hypercenter and an (n – m – 1)-dimensional plane, which does not have common points with the hypercentered plane. The composition equipment is given by field of quasitensor . It is proved that the composition equipment for the congruence Vnm of hypercentred m-planes Pm induces a fundamental-group connection with object Г in the principal bundle Gr (Vnm ) associated with the congruence. In proof, the envelopments Г Г(, ) are built for the components of the connection object Г .","PeriodicalId":114406,"journal":{"name":"Differential Geometry of Manifolds of Figures","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115430502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}