Prolonged almost quazi-Sasakian structures

S. Galaev
{"title":"Prolonged almost quazi-Sasakian structures","authors":"S. Galaev","doi":"10.5922/0321-4796-2020-52-7","DOIUrl":null,"url":null,"abstract":"The notion of an almost quasi-Sasakian manifold is introduced. A ma­nifold with an almost quasi-Sasakian structure is a generalization of a quasi-Sasakian manifold; the difference is that an almost quasi-Sasakian manifold is almost normal. A characteristic criterion for an almost quasi-Sasakian manifold is formulated. Conditions are found under which al­most quasi-Sasakian manifolds are quasi-Sasakian manifolds. In particu­lar, an almost quasi-Sasakian manifold is a quasi-Sasakian manifold if and only if the first and second structure endomorphisms commute. An extended almost contact metric structure is defined on the distribution of an almost contact metric manifold. It follows from the definition of an extended structure that it is a quasi-Sasakian structure only if the original structure is cosymplectic with zero Schouten curvature tensor. It is proved that the constructed extended almost contact metric structure is the struc­ture of an almost quasi-Sasakian manifold if and only if the Schouten ten­sor of the original manifold is equal to zero. Relationships are found be­tween the second structure endomorphisms of the original and extended structures.","PeriodicalId":114406,"journal":{"name":"Differential Geometry of Manifolds of Figures","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry of Manifolds of Figures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5922/0321-4796-2020-52-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The notion of an almost quasi-Sasakian manifold is introduced. A ma­nifold with an almost quasi-Sasakian structure is a generalization of a quasi-Sasakian manifold; the difference is that an almost quasi-Sasakian manifold is almost normal. A characteristic criterion for an almost quasi-Sasakian manifold is formulated. Conditions are found under which al­most quasi-Sasakian manifolds are quasi-Sasakian manifolds. In particu­lar, an almost quasi-Sasakian manifold is a quasi-Sasakian manifold if and only if the first and second structure endomorphisms commute. An extended almost contact metric structure is defined on the distribution of an almost contact metric manifold. It follows from the definition of an extended structure that it is a quasi-Sasakian structure only if the original structure is cosymplectic with zero Schouten curvature tensor. It is proved that the constructed extended almost contact metric structure is the struc­ture of an almost quasi-Sasakian manifold if and only if the Schouten ten­sor of the original manifold is equal to zero. Relationships are found be­tween the second structure endomorphisms of the original and extended structures.
延长了几乎是准sasaki式的结构
引入了概拟sasaki流形的概念。拟sasakian流形是拟sasakian流形的推广;不同之处在于,一个几乎准sasaki流形几乎是正常的。给出了一类拟sasaki流形的特征判据。给出了大多数拟sasaki流形是拟sasaki流形的条件。特别地,当且仅当第一和第二结构自同态交换时,几乎拟sasakian流形是拟sasakian流形。在几乎接触度量流形的分布上定义了一个扩展的几乎接触度量结构。由扩展结构的定义可知,只有当原结构为零Schouten曲率张量的余辛时,它才是拟sasaki结构。证明了所构造的扩展几乎接触度量结构是几乎拟sasaki流形的结构当且仅当原流形的Schouten十量等于零。发现了原始结构和扩展结构的第二结构自同态之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信