{"title":"高阶Killing和Codazzi的消失定理","authors":"S. Stepanov, I. Tsyganok","doi":"10.5922/0321-4796-2019-50-16","DOIUrl":null,"url":null,"abstract":"A Killing p-tensor (for an arbitrary natural number p ≥ 2) is a symmetric p-tensor with vanishing symmetrized covariant derivative. On the other hand, Codazzi p-tensor is a symmetric p-tensor with symmetric covariant derivative. Let M be a complete and simply connected Riemannian manifold of nonpositive (resp. non-negative) sectional curvature. In the first case we prove that an arbitrary symmetric traceless Killing p-tensor is parallel on M if its norm is a Lq -function for some q > 0. If in addition the volume of this manifold is infinite, then this tensor is equal to zero. In the second case we prove that an arbitrary traceless Codazzi p-tensor is equal to zero on a noncompact manifold M if its norm is a Lq -function for some q 1 .","PeriodicalId":114406,"journal":{"name":"Differential Geometry of Manifolds of Figures","volume":"267 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vanishing theorems for higher-order Killing and Codazzi\",\"authors\":\"S. Stepanov, I. Tsyganok\",\"doi\":\"10.5922/0321-4796-2019-50-16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Killing p-tensor (for an arbitrary natural number p ≥ 2) is a symmetric p-tensor with vanishing symmetrized covariant derivative. On the other hand, Codazzi p-tensor is a symmetric p-tensor with symmetric covariant derivative. Let M be a complete and simply connected Riemannian manifold of nonpositive (resp. non-negative) sectional curvature. In the first case we prove that an arbitrary symmetric traceless Killing p-tensor is parallel on M if its norm is a Lq -function for some q > 0. If in addition the volume of this manifold is infinite, then this tensor is equal to zero. In the second case we prove that an arbitrary traceless Codazzi p-tensor is equal to zero on a noncompact manifold M if its norm is a Lq -function for some q 1 .\",\"PeriodicalId\":114406,\"journal\":{\"name\":\"Differential Geometry of Manifolds of Figures\",\"volume\":\"267 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry of Manifolds of Figures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5922/0321-4796-2019-50-16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry of Manifolds of Figures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5922/0321-4796-2019-50-16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vanishing theorems for higher-order Killing and Codazzi
A Killing p-tensor (for an arbitrary natural number p ≥ 2) is a symmetric p-tensor with vanishing symmetrized covariant derivative. On the other hand, Codazzi p-tensor is a symmetric p-tensor with symmetric covariant derivative. Let M be a complete and simply connected Riemannian manifold of nonpositive (resp. non-negative) sectional curvature. In the first case we prove that an arbitrary symmetric traceless Killing p-tensor is parallel on M if its norm is a Lq -function for some q > 0. If in addition the volume of this manifold is infinite, then this tensor is equal to zero. In the second case we prove that an arbitrary traceless Codazzi p-tensor is equal to zero on a noncompact manifold M if its norm is a Lq -function for some q 1 .