黎曼拟复流形度量的保角变换

S. Stepanov, I. Tsyganok, V. Rovenski
{"title":"黎曼拟复流形度量的保角变换","authors":"S. Stepanov, I. Tsyganok, V. Rovenski","doi":"10.5922/0321-4796-2020-52-11","DOIUrl":null,"url":null,"abstract":"A 2n-dimensional differentiable manifold M with -structure is a Riemannian almost para­complex manifold. In the present paper, we consider con­formal transformations of metrics of Riemannian para­complex manifolds. In particular, a number of vanishing theorems for such transformations are proved using the Bochner technique.","PeriodicalId":114406,"journal":{"name":"Differential Geometry of Manifolds of Figures","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On conformal transformations of metrics of Riemannian paracomplex manifolds\",\"authors\":\"S. Stepanov, I. Tsyganok, V. Rovenski\",\"doi\":\"10.5922/0321-4796-2020-52-11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 2n-dimensional differentiable manifold M with -structure is a Riemannian almost para­complex manifold. In the present paper, we consider con­formal transformations of metrics of Riemannian para­complex manifolds. In particular, a number of vanishing theorems for such transformations are proved using the Bochner technique.\",\"PeriodicalId\":114406,\"journal\":{\"name\":\"Differential Geometry of Manifolds of Figures\",\"volume\":\"154 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry of Manifolds of Figures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5922/0321-4796-2020-52-11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry of Manifolds of Figures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5922/0321-4796-2020-52-11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

具有-结构的2n维可微流形M是一个黎曼几乎准复流形。在本文中,我们考虑黎曼拟复流形度量的共形变换。特别地,用Bochner技术证明了这类变换的一些消失定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On conformal transformations of metrics of Riemannian paracomplex manifolds
A 2n-dimensional differentiable manifold M with -structure is a Riemannian almost para­complex manifold. In the present paper, we consider con­formal transformations of metrics of Riemannian para­complex manifolds. In particular, a number of vanishing theorems for such transformations are proved using the Bochner technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信