非半对称的线性连接空间的度量

Y. Shevchenko, A. Vyalova
{"title":"非半对称的线性连接空间的度量","authors":"Y. Shevchenko, A. Vyalova","doi":"10.5922/0321-4796-2020-53-14","DOIUrl":null,"url":null,"abstract":"It is well-known Levi-Chivita’s construction of object for affine connection (in modern terminology — linear connection) by the field of non-degenerate metric on a smooth manifold. An inverse problem (a construction of metric by given linear connection) is solved ambiguously, besides, the metric may turn out to be degenerate and indefinite. On the one hand, two metrics differing in a sign are obviously build: by curvature tensor contractionwith subsequent symmetrization. Оn the other hand, Vranceanu’s metric is a double contraction of multiplication of a torsion tensor’s components. In this paper Levi-Chivita’s inverse problem is solved in other way using the field of connection object. It is proved that in the general case, when the linear connection is not semi-symmetric, six metrics can be constructed. In the special case, when the linear connection is semi-symmetric (in particular, torsion-free), the constructed metrics vanish. The investigation is done on a semi-holonomic smooth manifold by means of two prolongation its structure equations.","PeriodicalId":114406,"journal":{"name":"Differential Geometry of Manifolds of Figures","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Metrics of a space with linear connection which is not semi-symmetric\",\"authors\":\"Y. Shevchenko, A. Vyalova\",\"doi\":\"10.5922/0321-4796-2020-53-14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well-known Levi-Chivita’s construction of object for affine connection (in modern terminology — linear connection) by the field of non-degenerate metric on a smooth manifold. An inverse problem (a construction of metric by given linear connection) is solved ambiguously, besides, the metric may turn out to be degenerate and indefinite. On the one hand, two metrics differing in a sign are obviously build: by curvature tensor contractionwith subsequent symmetrization. Оn the other hand, Vranceanu’s metric is a double contraction of multiplication of a torsion tensor’s components. In this paper Levi-Chivita’s inverse problem is solved in other way using the field of connection object. It is proved that in the general case, when the linear connection is not semi-symmetric, six metrics can be constructed. In the special case, when the linear connection is semi-symmetric (in particular, torsion-free), the constructed metrics vanish. The investigation is done on a semi-holonomic smooth manifold by means of two prolongation its structure equations.\",\"PeriodicalId\":114406,\"journal\":{\"name\":\"Differential Geometry of Manifolds of Figures\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry of Manifolds of Figures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5922/0321-4796-2020-53-14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry of Manifolds of Figures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5922/0321-4796-2020-53-14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

列维-奇维塔在光滑流形上用非退化度规域构造仿射连接(现代术语为线性连接)的对象是众所周知的。一个逆问题(由给定的线性连接构造度规)求解含糊,而且度规可能是退化的和不确定的。一方面,两个符号不同的度量显然是通过曲率张量收缩和随后的对称来构建的。Оn另一方面,vancanu的度规是一个扭转张量的分量相乘的双重收缩。本文利用连接对象的场,以另一种方式解决了Levi-Chivita的逆问题。证明了在一般情况下,当线性连接非半对称时,可以构造六个度量。在特殊情况下,当线性连接是半对称的(特别是无扭转的)时,构造的度量消失。利用半完整光滑流形的结构方程的两个扩展,研究了它的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metrics of a space with linear connection which is not semi-symmetric
It is well-known Levi-Chivita’s construction of object for affine connection (in modern terminology — linear connection) by the field of non-degenerate metric on a smooth manifold. An inverse problem (a construction of metric by given linear connection) is solved ambiguously, besides, the metric may turn out to be degenerate and indefinite. On the one hand, two metrics differing in a sign are obviously build: by curvature tensor contractionwith subsequent symmetrization. Оn the other hand, Vranceanu’s metric is a double contraction of multiplication of a torsion tensor’s components. In this paper Levi-Chivita’s inverse problem is solved in other way using the field of connection object. It is proved that in the general case, when the linear connection is not semi-symmetric, six metrics can be constructed. In the special case, when the linear connection is semi-symmetric (in particular, torsion-free), the constructed metrics vanish. The investigation is done on a semi-holonomic smooth manifold by means of two prolongation its structure equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信