在流形上生成法线的映射

K. Polyakova
{"title":"在流形上生成法线的映射","authors":"K. Polyakova","doi":"10.5922/0321-4796-2019-50-13","DOIUrl":null,"url":null,"abstract":"The first- and second-order canonical forms are considered on a smooth m-manifold. The approach connected with coordinate expressions of basic and fiber forms, and first- and second-order tangent vectors on a manifold is implemented. It is shown that the basic first- and secondorder tangent vectors are first- and second-order Pfaffian (generalized) differentiation operators of functions set on a manifold. Normals on a manifold are considered. Differentials of the basic first-order (second-order) tangent vectors are linear maps from the first-order tangent space to the second-order (third-order) tangent space. Differentials of the basic first-order tangent vectors (basic vectors of the first-order normal) set a map which takes a first-order tangent vector into the second-order normal for the first-order tangent space of (into the third-order normal for second-order tangent space). The map given by differentials of the basic first-order tangent vectors takes all tangent vectors to the vectors of the second-order normal. Such splitting the osculating space in the direct sum of the first-order tangent space and second-order normal defines the simplest (canonical) affine connection which horizontal subspace is the indicated normal. This connection is flat and symmetric. The second-order normal is the horizontal subspace for this connection. Derivatives of some basic vectors in the direction of other basic vectors are equal to values of differentials of the first vectors on the second vectors, and the order of differentials is equal to the order of vectors along which differentiation is made. The maps set by differentials of basic vectors of r-order normal for (r – 1)-order tangent space take the basic first-order tangent vectors to the basic vectors of (r + 1)-order normal for r-order tangent space. Horizontal vectors for the simplest second-order connection are constructed. Second-order curvature and torsion tensors vanish in this connection. For horizontal vectors of the simplest second-order connection there is the decomposition by means of the basic vectors of the secondand third-order normals.","PeriodicalId":114406,"journal":{"name":"Differential Geometry of Manifolds of Figures","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maps generating normals on a manifold\",\"authors\":\"K. Polyakova\",\"doi\":\"10.5922/0321-4796-2019-50-13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The first- and second-order canonical forms are considered on a smooth m-manifold. The approach connected with coordinate expressions of basic and fiber forms, and first- and second-order tangent vectors on a manifold is implemented. It is shown that the basic first- and secondorder tangent vectors are first- and second-order Pfaffian (generalized) differentiation operators of functions set on a manifold. Normals on a manifold are considered. Differentials of the basic first-order (second-order) tangent vectors are linear maps from the first-order tangent space to the second-order (third-order) tangent space. Differentials of the basic first-order tangent vectors (basic vectors of the first-order normal) set a map which takes a first-order tangent vector into the second-order normal for the first-order tangent space of (into the third-order normal for second-order tangent space). The map given by differentials of the basic first-order tangent vectors takes all tangent vectors to the vectors of the second-order normal. Such splitting the osculating space in the direct sum of the first-order tangent space and second-order normal defines the simplest (canonical) affine connection which horizontal subspace is the indicated normal. This connection is flat and symmetric. The second-order normal is the horizontal subspace for this connection. Derivatives of some basic vectors in the direction of other basic vectors are equal to values of differentials of the first vectors on the second vectors, and the order of differentials is equal to the order of vectors along which differentiation is made. The maps set by differentials of basic vectors of r-order normal for (r – 1)-order tangent space take the basic first-order tangent vectors to the basic vectors of (r + 1)-order normal for r-order tangent space. Horizontal vectors for the simplest second-order connection are constructed. Second-order curvature and torsion tensors vanish in this connection. For horizontal vectors of the simplest second-order connection there is the decomposition by means of the basic vectors of the secondand third-order normals.\",\"PeriodicalId\":114406,\"journal\":{\"name\":\"Differential Geometry of Manifolds of Figures\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry of Manifolds of Figures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5922/0321-4796-2019-50-13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry of Manifolds of Figures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5922/0321-4796-2019-50-13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究光滑m流形上的一阶和二阶正则形式。该方法结合了流形上的基本形式和纤维形式的坐标表达式,以及一阶和二阶切向量。证明了基本一阶和二阶切向量是流形上函数集的一阶和二阶广义微分算子。考虑流形上的法线。基本一阶(二阶)切向量的微分是从一阶切空间到二阶(三阶)切空间的线性映射。基本一阶切向量的微分(一阶法线的基本向量)设置了一个映射,该映射将一阶切向量转化为一阶切空间的二阶法线(转化为二阶切空间的三阶法线)。基本一阶切向量的微分给出的映射将所有切向量映射到二阶法线的向量。在一阶正切空间与二阶法线的直接和中划分密切空间,定义了以水平子空间为指示法线的最简单(正则)仿射连接。这种连接是平的和对称的。二阶法线是这个连接的水平子空间。一些基本向量在其他基本向量方向上的导数等于第一个向量在第二个向量上的微分值,微分的阶数等于沿其进行微分的向量的阶数。由(r - 1)阶切空间的r阶法向的基本向量的微分集合的映射取基本一阶切向量到r阶切空间的(r + 1)阶法向的基本向量。构造了最简单二阶连接的水平向量。二阶曲率张量和扭转张量在这种关系中消失。对于最简单的二阶连接的水平向量,利用二阶和三阶法线的基本向量进行分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maps generating normals on a manifold
The first- and second-order canonical forms are considered on a smooth m-manifold. The approach connected with coordinate expressions of basic and fiber forms, and first- and second-order tangent vectors on a manifold is implemented. It is shown that the basic first- and secondorder tangent vectors are first- and second-order Pfaffian (generalized) differentiation operators of functions set on a manifold. Normals on a manifold are considered. Differentials of the basic first-order (second-order) tangent vectors are linear maps from the first-order tangent space to the second-order (third-order) tangent space. Differentials of the basic first-order tangent vectors (basic vectors of the first-order normal) set a map which takes a first-order tangent vector into the second-order normal for the first-order tangent space of (into the third-order normal for second-order tangent space). The map given by differentials of the basic first-order tangent vectors takes all tangent vectors to the vectors of the second-order normal. Such splitting the osculating space in the direct sum of the first-order tangent space and second-order normal defines the simplest (canonical) affine connection which horizontal subspace is the indicated normal. This connection is flat and symmetric. The second-order normal is the horizontal subspace for this connection. Derivatives of some basic vectors in the direction of other basic vectors are equal to values of differentials of the first vectors on the second vectors, and the order of differentials is equal to the order of vectors along which differentiation is made. The maps set by differentials of basic vectors of r-order normal for (r – 1)-order tangent space take the basic first-order tangent vectors to the basic vectors of (r + 1)-order normal for r-order tangent space. Horizontal vectors for the simplest second-order connection are constructed. Second-order curvature and torsion tensors vanish in this connection. For horizontal vectors of the simplest second-order connection there is the decomposition by means of the basic vectors of the secondand third-order normals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信