{"title":"具有Killing - Ricci张量和Codazzi - Ricci张量的完备黎曼流形","authors":"S. Stepanov, I. Tsyganok, J. Mikeš","doi":"10.5922/0321-4796-2022-53-10","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to prove of Liouville type theorems, i. e., theorems on the non-existence of Killing — Ricci and Codazzi — Ricci tensors on complete non-compact Riemannian manifolds. Our results complement the two classical vanishing theorems from the last chapter of famous Besse’s monograph on Einstein manifolds.","PeriodicalId":114406,"journal":{"name":"Differential Geometry of Manifolds of Figures","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complete Riemannian manifolds with Killing — Ricci and Codazzi — Ricci tensors\",\"authors\":\"S. Stepanov, I. Tsyganok, J. Mikeš\",\"doi\":\"10.5922/0321-4796-2022-53-10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to prove of Liouville type theorems, i. e., theorems on the non-existence of Killing — Ricci and Codazzi — Ricci tensors on complete non-compact Riemannian manifolds. Our results complement the two classical vanishing theorems from the last chapter of famous Besse’s monograph on Einstein manifolds.\",\"PeriodicalId\":114406,\"journal\":{\"name\":\"Differential Geometry of Manifolds of Figures\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry of Manifolds of Figures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5922/0321-4796-2022-53-10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry of Manifolds of Figures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5922/0321-4796-2022-53-10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Complete Riemannian manifolds with Killing — Ricci and Codazzi — Ricci tensors
The purpose of this paper is to prove of Liouville type theorems, i. e., theorems on the non-existence of Killing — Ricci and Codazzi — Ricci tensors on complete non-compact Riemannian manifolds. Our results complement the two classical vanishing theorems from the last chapter of famous Besse’s monograph on Einstein manifolds.