{"title":"Vanishing theorems for higher-order Killing and Codazzi","authors":"S. Stepanov, I. Tsyganok","doi":"10.5922/0321-4796-2019-50-16","DOIUrl":null,"url":null,"abstract":"A Killing p-tensor (for an arbitrary natural number p ≥ 2) is a symmetric p-tensor with vanishing symmetrized covariant derivative. On the other hand, Codazzi p-tensor is a symmetric p-tensor with symmetric covariant derivative. Let M be a complete and simply connected Riemannian manifold of nonpositive (resp. non-negative) sectional curvature. In the first case we prove that an arbitrary symmetric traceless Killing p-tensor is parallel on M if its norm is a Lq -function for some q > 0. If in addition the volume of this manifold is infinite, then this tensor is equal to zero. In the second case we prove that an arbitrary traceless Codazzi p-tensor is equal to zero on a noncompact manifold M if its norm is a Lq -function for some q 1 .","PeriodicalId":114406,"journal":{"name":"Differential Geometry of Manifolds of Figures","volume":"267 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry of Manifolds of Figures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5922/0321-4796-2019-50-16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A Killing p-tensor (for an arbitrary natural number p ≥ 2) is a symmetric p-tensor with vanishing symmetrized covariant derivative. On the other hand, Codazzi p-tensor is a symmetric p-tensor with symmetric covariant derivative. Let M be a complete and simply connected Riemannian manifold of nonpositive (resp. non-negative) sectional curvature. In the first case we prove that an arbitrary symmetric traceless Killing p-tensor is parallel on M if its norm is a Lq -function for some q > 0. If in addition the volume of this manifold is infinite, then this tensor is equal to zero. In the second case we prove that an arbitrary traceless Codazzi p-tensor is equal to zero on a noncompact manifold M if its norm is a Lq -function for some q 1 .