Development最新文献

筛选
英文 中文
Transitions in development - an interview with Fan Zhou. 发展中的过渡--周凡访谈录。
IF 3.7 2区 生物学
Development Pub Date : 2024-10-01 Epub Date: 2024-09-30 DOI: 10.1242/dev.204377
{"title":"Transitions in development - an interview with Fan Zhou.","authors":"","doi":"10.1242/dev.204377","DOIUrl":"https://doi.org/10.1242/dev.204377","url":null,"abstract":"<p><p>Fan Zhou is a group leader at Tsinghua University, China, where he works on the molecular changes that underpin cell fate transitions during early embryogenesis. We met with Fan over Zoom to discuss his career path so far. He discussed how a chance foray into basic research following his undergraduate degree sparked a lifelong passion for developmental biology, and how his interest in technology development has fed into his independent research.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retinoic acid, an essential component of the roof plate organizer, promotes the spatiotemporal segregation of dorsal neural fates. 视黄酸是顶板组织器的重要组成部分,能促进背侧神经命运的时空分离。
IF 3.7 2区 生物学
Development Pub Date : 2024-10-01 Epub Date: 2024-09-30 DOI: 10.1242/dev.202973
Dina Rekler, Shai Ofek, Sarah Kagan, Gilgi Friedlander, Chaya Kalcheim
{"title":"Retinoic acid, an essential component of the roof plate organizer, promotes the spatiotemporal segregation of dorsal neural fates.","authors":"Dina Rekler, Shai Ofek, Sarah Kagan, Gilgi Friedlander, Chaya Kalcheim","doi":"10.1242/dev.202973","DOIUrl":"10.1242/dev.202973","url":null,"abstract":"<p><p>Dorsal neural tube-derived retinoic acid promotes the end of neural crest production and transition into a definitive roof plate. Here, we analyze how this impacts the segregation of central and peripheral lineages, a process essential for tissue patterning and function. Localized in ovo inhibition in quail embryos of retinoic acid activity followed by single-cell transcriptomics unraveled a comprehensive list of differentially expressed genes relevant to these processes. Importantly, progenitors co-expressed neural crest, roof plate and dI1 interneuron markers, indicating a failure in proper lineage segregation. Furthermore, separation between roof plate and dI1 interneurons is mediated by Notch activity downstream of retinoic acid, highlighting their crucial role in establishing the roof plate-dI1 boundary. Within the peripheral branch, where absence of retinoic acid resulted in neural crest production and emigration extending into the roof plate stage, sensory progenitors failed to separate from melanocytes, leading to formation of a common glia-melanocyte cell with aberrant migratory patterns. In summary, the implementation of single-cell RNA sequencing facilitated the discovery and characterization of a molecular mechanism responsible for the segregation of dorsal neural fates during development.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142282056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Manipulating cell fate through reprogramming: approaches and applications. 通过重编程操纵细胞命运:方法与应用。
IF 3.7 2区 生物学
Development Pub Date : 2024-10-01 Epub Date: 2024-09-30 DOI: 10.1242/dev.203090
Masaki Yagi, Joy E Horng, Konrad Hochedlinger
{"title":"Manipulating cell fate through reprogramming: approaches and applications.","authors":"Masaki Yagi, Joy E Horng, Konrad Hochedlinger","doi":"10.1242/dev.203090","DOIUrl":"https://doi.org/10.1242/dev.203090","url":null,"abstract":"<p><p>Cellular plasticity progressively declines with development and differentiation, yet these processes can be experimentally reversed by reprogramming somatic cells to induced pluripotent stem cells (iPSCs) using defined transcription factors. Advances in reprogramming technology over the past 15 years have enabled researchers to study diseases with patient-specific iPSCs, gain fundamental insights into how cell identity is maintained, recapitulate early stages of embryogenesis using various embryo models, and reverse aspects of aging in cultured cells and animals. Here, we review and compare currently available reprogramming approaches, including transcription factor-based methods and small molecule-based approaches, to derive pluripotent cells characteristic of early embryos. Additionally, we discuss our current understanding of mechanisms that resist reprogramming and their role in cell identity maintenance. Finally, we review recent efforts to rejuvenate cells and tissues with reprogramming factors, as well as the application of iPSCs in deriving novel embryo models to study pre-implantation development.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Axin1 regulates tooth root development by inhibiting AKT1-mTORC1 activation and Shh translation in Hertwig's epithelial root sheath. Axin1 通过抑制 Hertwig 上皮根鞘中 AKT1-mTORC1 的激活和 Shh 的翻译来调节牙根的发育。
IF 3.7 2区 生物学
Development Pub Date : 2024-09-30 DOI: 10.1242/dev.202899
Xiaoyu Zheng, Hongcan Huang, Zhipeng Zhou, Weihua Guo, Guobin Yang, Zhi Chen, Di Chen, YiPing Chen, Guohua Yuan
{"title":"Axin1 regulates tooth root development by inhibiting AKT1-mTORC1 activation and Shh translation in Hertwig's epithelial root sheath.","authors":"Xiaoyu Zheng, Hongcan Huang, Zhipeng Zhou, Weihua Guo, Guobin Yang, Zhi Chen, Di Chen, YiPing Chen, Guohua Yuan","doi":"10.1242/dev.202899","DOIUrl":"https://doi.org/10.1242/dev.202899","url":null,"abstract":"<p><p>Hertwig's epithelial root sheath (HERS) interacts with dental apical mesenchyme and guides development of the tooth root, which is an integral part for the function of the whole tooth. However, the key genes in HERS essential for root development are understudied. Here we show that Axin1, a scaffold protein that negatively regulates canonical Wnt signaling, is strongly expressed in the HERS. Axin1 ablation in the HERS of mice leads to defective root development but in a manner independent of canonical Wnt signaling. Further studies reveal that Axin1 in the HERS negatively regulates the AKT1-mTORC1 pathway through binding to AKT1, leading to inhibition of ribosomal biogenesis and mRNA translation. Sonic hedgehog (Shh) protein, a morphogen essential for root development, is over synthesized by upregulated mTORC1 activity upon Axin1 inactivation. Importantly, either haploinsufficiency of mTORC1 subunit Raptor or pharmacologic inhibition of Shh signaling can rescue the root defects in Axin1 mutant mice. Collectively, our data suggest that, independent of canonical Wnt signaling, Axin1 controls ribosomal biogenesis and selective mRNA translation programs via AKT1-mTORC1 signaling during tooth root development.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Allometry in limb regeneration and scale-invariant patterning as the basis of normal morphogenesis from different sizes of blastemas. 肢体再生中的异型性和规模不变模式化是不同大小胚胎正常形态发生的基础。
IF 3.7 2区 生物学
Development Pub Date : 2024-09-30 DOI: 10.1242/dev.202697
Saya Furukawa, Sakiya Yamamoto, Ayaka Ohashi, Yoshihiro Morishita, Akira Satoh
{"title":"Allometry in limb regeneration and scale-invariant patterning as the basis of normal morphogenesis from different sizes of blastemas.","authors":"Saya Furukawa, Sakiya Yamamoto, Ayaka Ohashi, Yoshihiro Morishita, Akira Satoh","doi":"10.1242/dev.202697","DOIUrl":"https://doi.org/10.1242/dev.202697","url":null,"abstract":"<p><p>Axolotl (Ambystoma mexicanum) limb regeneration begins with blastemas of various sizes, in contrast to the limb developmental process. Despite this size variation, normal limb morphology, consistent with a limb stump size, is regenerated. This outcome suggests the existence of underlying scale-invariant mechanisms. To identify such mechanisms, we examined the allometric relationships between blastema size, and Sonic Hedgehog (Shh) and Fibroblast Growth Factor 8 (Fgf8) expression patterns against limb stump size. We found that all factors showed allometric rather than isometric scaling; specifically, their relative sizes decrease with an increase in limb stump size. However, the ratio of Shh/Fgf8 signaling dominant region was nearly constant, independent of blastema/body size. Furthermore, the relative spatial patterns of cell density and proliferation activity and the relative position of first digit formation were scale-invariant in the summed Shh/Fgf8 crosstalk region. This scale-invariant nature may underlie the morphogenesis of normal limbs from different sizes of blastemas.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environmental and molecular control of tissue-specific ionocyte differentiation in zebrafish. 斑马鱼组织特异性离子细胞分化的环境和分子控制
IF 3.7 2区 生物学
Development Pub Date : 2024-09-26 DOI: 10.1242/dev.202809
Julia Peloggia, Mark E Lush, Ya-Yin Tsai, Christopher Wood, Tatjana Piotrowski
{"title":"Environmental and molecular control of tissue-specific ionocyte differentiation in zebrafish.","authors":"Julia Peloggia, Mark E Lush, Ya-Yin Tsai, Christopher Wood, Tatjana Piotrowski","doi":"10.1242/dev.202809","DOIUrl":"https://doi.org/10.1242/dev.202809","url":null,"abstract":"<p><p>Organisms cope with environmental fluctuations and maintain fitness in part via reversible phenotypic changes (acclimation). Aquatic animals are subject to dramatic seasonal fluctuations in water salinity, which affect osmolarity of their cells and consequently cellular function. Mechanosensory lateral line hair cells detect water motion for swimming behavior and are especially susceptible to salinity changes due to their direct contact with the environment. To maintain hair cell function when salinity decreases, neuromast (Nm)-associated ionocytes differentiate and invade lateral line neuromasts. The signals that trigger the adaptive differentiation of Nm ionocytes are unknown. We demonstrate that new Nm ionocytes are rapidly specified and selectively triggered to proliferate by low Ca2+ and Na+/Cl- levels. We further show that Nm ionocyte recruitment and induction is affected by hair cell activity. Once specified, Nm ionocyte differentiation and survival are associated with sequential activation of different Notch pathway components, a process different from other tissue-specific ionocytes. In summary, we show how environmental changes activate a signaling cascade that leads to physiological adaptation. This may prove essential for survival not only in seasonal changing environments but also changing climates.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gene regulatory dynamics during the development of a paleopteran insect, the mayfly Cloeon dipterum. 古翅目昆虫蜉蝣发育过程中的基因调控动态。
IF 3.7 2区 生物学
Development Pub Date : 2024-09-26 DOI: 10.1242/dev.203017
Joan Pallarès-Albanell, Laia Ortega-Flores, Tòt Senar-Serra, Antoni Ruiz, Josep F Abril, Maria Rossello, Isabel Almudi
{"title":"Gene regulatory dynamics during the development of a paleopteran insect, the mayfly Cloeon dipterum.","authors":"Joan Pallarès-Albanell, Laia Ortega-Flores, Tòt Senar-Serra, Antoni Ruiz, Josep F Abril, Maria Rossello, Isabel Almudi","doi":"10.1242/dev.203017","DOIUrl":"https://doi.org/10.1242/dev.203017","url":null,"abstract":"<p><p>The evolution of insects has been marked by the appearance of key body plan innovations that promoted the outstanding ability of this lineage to adapt to new habitats, boosting the most successful radiation in animals. To understand the evolution of these new structures, it is essential to investigate which are the genes and gene regulatory networks participating during the embryonic development of insects. Great efforts have been made to fully understand gene expression and gene regulation during the development of holometabolous insects, in particular Drosophila melanogaster. Conversely, functional genomics resources and databases in other insect lineages are scarce. To provide a new platform to study gene regulation in insects, we generated ATAC-seq (Assay for transposase-Accessible Chromatin) for the first time during the development of the mayfly Cloeon dipterum, which belongs to Paleoptera, the sister group to all other winged insects. With these comprehensive datasets along six developmental stages, we characterised pronounced changes in accessible chromatin between early and late embryogenesis. The application of ATAC-seq in mayflies provides a fundamental resource to understand the evolution of gene regulation in insects.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust organ size in Arabidopsis is primarily governed by cell growth rather than cell division patterns. 拟南芥的器官大小主要受细胞生长而非细胞分裂模式的影响。
IF 3.7 2区 生物学
Development Pub Date : 2024-09-26 DOI: 10.1242/dev.202531
Isabella Burda, Fridtjof Brauns, Frances K Clark, Chun-Biu Li, Adrienne H K Roeder
{"title":"Robust organ size in Arabidopsis is primarily governed by cell growth rather than cell division patterns.","authors":"Isabella Burda, Fridtjof Brauns, Frances K Clark, Chun-Biu Li, Adrienne H K Roeder","doi":"10.1242/dev.202531","DOIUrl":"https://doi.org/10.1242/dev.202531","url":null,"abstract":"<p><p>Organ sizes and shapes are highly reproducible, or robust, within a species and individuals. Arabidopsis thaliana sepals, which are the leaf-like organs that enclose flower buds, have consistent size and shape, indicating robust development. Cell growth is locally heterogeneous due to intrinsic and extrinsic noise. To achieve robust organ shape, fluctuations in cell growth must average to an even growth rate which requires that fluctuations are uncorrelated or anti-correlated in time and space. Here, we live image and quantify the development of sepals with increased or decreased number of cell divisions (lgo mutant and LGO overexpression, respectively), a mutant with altered cell growth variability (ftsh4), and double mutants combining these. Changes in the number of cell divisions do not change the overall growth pattern. By contrast, in ftsh4 mutants, cell growth accumulates in patches of over- and under-growth due to correlations that impair averaging, resulting in increased organ shape variability. Thus, we demonstrate in vivo the number of cell divisions does not affect averaging of cell growth, preserving robust organ morphogenesis, while correlated growth fluctuations impair averaging.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ribosome biogenesis is essential for hemogenic endothelial cells to generate hematopoietic stem cells. 核糖体的生物发生对造血内皮细胞生成造血干细胞至关重要。
IF 3.7 2区 生物学
Development Pub Date : 2024-09-26 DOI: 10.1242/dev.202875
Di Liu, Haizhen Wang, Haifeng Chen, Xitong Tian, Yuqing Jiao, Chi Wang, Yuhui Li, Zongcheng Li, Siyuan Hou, Yanli Ni, Bing Liu, Yu Lan, Jie Zhou
{"title":"Ribosome biogenesis is essential for hemogenic endothelial cells to generate hematopoietic stem cells.","authors":"Di Liu, Haizhen Wang, Haifeng Chen, Xitong Tian, Yuqing Jiao, Chi Wang, Yuhui Li, Zongcheng Li, Siyuan Hou, Yanli Ni, Bing Liu, Yu Lan, Jie Zhou","doi":"10.1242/dev.202875","DOIUrl":"https://doi.org/10.1242/dev.202875","url":null,"abstract":"<p><p>Undergoing endothelial-to-hematopoietic transition, a small fraction of embryonic aortic endothelial cells specializes into hemogenic endothelial cells (HECs) and eventually gives rise to hematopoietic stem cells (HSCs). Previously we have found that the activity of ribosome biogenesis (RiBi) is highly enriched in the HSC-primed HECs as compared with adjacent arterial endothelial cells, however, whether RiBi is required in HECs for the generation of HSC remain to be determined. Here, we found that robust RiBi was markedly augmented from HEC stage along the HSC ontogeny. Pharmacological inhibition of RiBi completely impeded the generation of HSCs in explant cultures. Moreover, disrupting RiBi selectively interrupted the HSC generation potential of HECs rather than T1 pre-HSCs, which was in line with its influence on cell cycle activity. Further investigation revealed that upon HEC specification the master transcription factor Runx1 dramatically bound to the loci of genes involved in RiBi, thereby facilitating this biological process. Taken together, our study provided functional evidence showing the indispensable role of RiBi in HECs to generate HSCs, providing novel insights that may contribute to improving HSC regeneration strategies.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Myonuclear position and blood vessel organization during skeletal muscle postnatal development. 骨骼肌产后发育过程中的肌核位置和血管组织
IF 4.6 2区 生物学
Development Pub Date : 2024-09-17 DOI: 10.1242/dev.202548
Catarina Sequeira,Lou Martha Wackerbarth,Andreia Pena,Mafalda Sá-Pereira,Cláudio A Franco,Edgar R Gomes
{"title":"Myonuclear position and blood vessel organization during skeletal muscle postnatal development.","authors":"Catarina Sequeira,Lou Martha Wackerbarth,Andreia Pena,Mafalda Sá-Pereira,Cláudio A Franco,Edgar R Gomes","doi":"10.1242/dev.202548","DOIUrl":"https://doi.org/10.1242/dev.202548","url":null,"abstract":"Skeletal muscle development is a complex process involving myoblast fusion to generate multinucleated fibers. Myonuclei first align in the center of the myotubes before migrating to the periphery of the myofiber. Blood vessels (BVs) are important contributors to the correct development of skeletal muscle, and myonuclei are found next to BVs in adult muscle. Here, we show that most myonuclear migration to the periphery occurs between E17.5 and P1. Furthermore, myonuclear accretion after P7 does not result in centrally nucleated myofibers as observed in the embryo. Instead, myonuclei remain at the periphery of the myofiber without moving to the center. Finally, we show that hypovascularization of skeletal muscle alters the interaction between myonuclei and BVs, suggesting that BVs may contribute to myonuclear positioning during skeletal muscle postnatal development. Overall, this work provides a comprehensive analysis of skeletal muscle development during the highly dynamic postnatal period, bringing new insights about myonuclear positioning and its interaction with BVs.","PeriodicalId":11375,"journal":{"name":"Development","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信