Elise McCollough Nanista, Landon Elizabeth Poythress, Isabell Reese Skipper, Trevor Haskins, Marieher Felix Cora, Tania Rozario
{"title":"来自头部和萌发区的信号对小膜绦虫再生能力的调控存在差异。","authors":"Elise McCollough Nanista, Landon Elizabeth Poythress, Isabell Reese Skipper, Trevor Haskins, Marieher Felix Cora, Tania Rozario","doi":"10.1242/dev.204781","DOIUrl":null,"url":null,"abstract":"<p><p>Competence to regenerate lost tissues varies widely across species. The rat tapeworm, Hymenolepis diminuta, undergoes continual cycles of shedding and regenerating thousands of reproductive segments to propagate the species. Despite its prowess, H. diminuta can only regenerate posteriorly from a singular tissue: the neck or germinative region (GR). What cells and signaling pathways restrict regeneration competence to the GR? In this study, we show that the head regulates regeneration competence by promoting maintenance of the GR and inhibiting proglottid formation in a distance-dependent manner. Anterior-posterior (A-P) patterning within the GR provide local signals that contribute to these responses. βcat1 is necessary for stem cell maintenance, proliferation and proglottidization. On the other hand, sfrp is necessary for maintaining the GR at its proper length. Our study demonstrates that the head organizes a balance of pro- and anti-regeneration signals that must be integrated together and therefore control competence to regenerate.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Signals from the head and germinative region differentially regulate regeneration competence of the tapeworm Hymenolepis diminuta.\",\"authors\":\"Elise McCollough Nanista, Landon Elizabeth Poythress, Isabell Reese Skipper, Trevor Haskins, Marieher Felix Cora, Tania Rozario\",\"doi\":\"10.1242/dev.204781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Competence to regenerate lost tissues varies widely across species. The rat tapeworm, Hymenolepis diminuta, undergoes continual cycles of shedding and regenerating thousands of reproductive segments to propagate the species. Despite its prowess, H. diminuta can only regenerate posteriorly from a singular tissue: the neck or germinative region (GR). What cells and signaling pathways restrict regeneration competence to the GR? In this study, we show that the head regulates regeneration competence by promoting maintenance of the GR and inhibiting proglottid formation in a distance-dependent manner. Anterior-posterior (A-P) patterning within the GR provide local signals that contribute to these responses. βcat1 is necessary for stem cell maintenance, proliferation and proglottidization. On the other hand, sfrp is necessary for maintaining the GR at its proper length. Our study demonstrates that the head organizes a balance of pro- and anti-regeneration signals that must be integrated together and therefore control competence to regenerate.</p>\",\"PeriodicalId\":11375,\"journal\":{\"name\":\"Development\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/dev.204781\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/dev.204781","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Signals from the head and germinative region differentially regulate regeneration competence of the tapeworm Hymenolepis diminuta.
Competence to regenerate lost tissues varies widely across species. The rat tapeworm, Hymenolepis diminuta, undergoes continual cycles of shedding and regenerating thousands of reproductive segments to propagate the species. Despite its prowess, H. diminuta can only regenerate posteriorly from a singular tissue: the neck or germinative region (GR). What cells and signaling pathways restrict regeneration competence to the GR? In this study, we show that the head regulates regeneration competence by promoting maintenance of the GR and inhibiting proglottid formation in a distance-dependent manner. Anterior-posterior (A-P) patterning within the GR provide local signals that contribute to these responses. βcat1 is necessary for stem cell maintenance, proliferation and proglottidization. On the other hand, sfrp is necessary for maintaining the GR at its proper length. Our study demonstrates that the head organizes a balance of pro- and anti-regeneration signals that must be integrated together and therefore control competence to regenerate.
期刊介绍:
Development’s scope covers all aspects of plant and animal development, including stem cell biology and regeneration. The single most important criterion for acceptance in Development is scientific excellence. Research papers (articles and reports) should therefore pose and test a significant hypothesis or address a significant question, and should provide novel perspectives that advance our understanding of development. We also encourage submission of papers that use computational methods or mathematical models to obtain significant new insights into developmental biology topics. Manuscripts that are descriptive in nature will be considered only when they lay important groundwork for a field and/or provide novel resources for understanding developmental processes of broad interest to the community.
Development includes a Techniques and Resources section for the publication of new methods, datasets, and other types of resources. Papers describing new techniques should include a proof-of-principle demonstration that the technique is valuable to the developmental biology community; they need not include in-depth follow-up analysis. The technique must be described in sufficient detail to be easily replicated by other investigators. Development will also consider protocol-type papers of exceptional interest to the community. We welcome submission of Resource papers, for example those reporting new databases, systems-level datasets, or genetic resources of major value to the developmental biology community. For all papers, the data or resource described must be made available to the community with minimal restrictions upon publication.
To aid navigability, Development has dedicated sections of the journal to stem cells & regeneration and to human development. The criteria for acceptance into these sections is identical to those outlined above. Authors and editors are encouraged to nominate appropriate manuscripts for inclusion in one of these sections.