Drug Delivery and Translational Research最新文献

筛选
英文 中文
3D-printing of dipyridamole/thermoplastic polyurethane materials for bone regeneration. 用于骨再生的双嘧达莫/热塑性聚氨酯材料的三维打印技术。
IF 5.7 3区 医学
Drug Delivery and Translational Research Pub Date : 2024-11-22 DOI: 10.1007/s13346-024-01744-1
Masoud Adhami, Anushree Ghosh Dastidar, Qonita Kurnia Anjani, Usanee Detamornrat, Quim Tarrés, Marc Delgado-Aguilar, Jonathan G Acheson, Krishnagoud Manda, Susan A Clarke, Natalia Moreno-Castellanos, Eneko Larrañeta, Juan Domínguez-Robles
{"title":"3D-printing of dipyridamole/thermoplastic polyurethane materials for bone regeneration.","authors":"Masoud Adhami, Anushree Ghosh Dastidar, Qonita Kurnia Anjani, Usanee Detamornrat, Quim Tarrés, Marc Delgado-Aguilar, Jonathan G Acheson, Krishnagoud Manda, Susan A Clarke, Natalia Moreno-Castellanos, Eneko Larrañeta, Juan Domínguez-Robles","doi":"10.1007/s13346-024-01744-1","DOIUrl":"https://doi.org/10.1007/s13346-024-01744-1","url":null,"abstract":"<p><p>Tissue engineering combines biology and engineering to develop constructs for repairing or replacing damaged tissues. Over the last few years, this field has seen significant advancements, particularly in bone tissue engineering. 3D printing has revolutionised this field, allowing the fabrication of patient- or defect-specific scaffolds to enhance bone regeneration, thus providing a personalised approach that offers unique control over the shape, size, and structure of 3D-printed constructs. Accordingly, thermoplastic polyurethane (TPU)-based 3D-printed scaffolds loaded with dipyridamole (DIP) were manufactured to evaluate their in vitro osteogenic capacity. The fabricated DIP-loaded TPU-based scaffolds were fully characterised, and their physical and mechanical properties analysed. Moreover, the DIP release profile, the biocompatibility of scaffolds with murine calvaria-derived pre-osteoblastic cells, and the intracellular alkaline phosphatase (ALP) assay to verify osteogenic ability were evaluated. The results suggested that these materials offered an attractive option for preparing bone scaffolds due to their mechanical properties. Indeed, the addition of DIP in concentrations up to 10% did not influence the compression modulus. Moreover, DIP-loaded scaffolds containing the highest DIP cargo (10% w/w) were able to provide sustained drug release for up to 30 days. Furthermore, cell viability, proliferation, and osteogenesis of MC3T3-E1 cells were significantly increased with the highest DIP cargo (10% w/w) compared to the control samples. These promising results suggest that DIP-loaded TPU-based scaffolds may enhance bone regeneration. Combined with the flexibility of 3D printing, this approach has the potential to enable the creation of customized scaffolds tailored to patients' needs at the point of care in the future.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142686429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of physical and chemical modifications to drug reservoirs for stimuli-responsive microneedles. 对刺激响应式微针药物储库的物理和化学修饰进行评估。
IF 5.7 3区 医学
Drug Delivery and Translational Research Pub Date : 2024-11-20 DOI: 10.1007/s13346-024-01737-0
Luchi Li, Qonita Kurnia Anjani, Aaron R J Hutton, Mingshan Li, Akmal Hidayat Bin Sabri, Lalitkumar Vora, Yara A Naser, Yushi Tao, Helen O McCarthy, Ryan F Donnelly
{"title":"Evaluation of physical and chemical modifications to drug reservoirs for stimuli-responsive microneedles.","authors":"Luchi Li, Qonita Kurnia Anjani, Aaron R J Hutton, Mingshan Li, Akmal Hidayat Bin Sabri, Lalitkumar Vora, Yara A Naser, Yushi Tao, Helen O McCarthy, Ryan F Donnelly","doi":"10.1007/s13346-024-01737-0","DOIUrl":"https://doi.org/10.1007/s13346-024-01737-0","url":null,"abstract":"<p><p>Hydrogel-forming microneedle (MN) arrays are minimally-invasive devices that can penetrate the stratum corneum, the main barrier to topical drug application, without causing pain. However, drug delivery using hydrogel-forming MN arrays tends to be relatively slow compared to rapid drug delivery using conventional needles and syringes. Therefore, in this work, for the first time, different physical and chemical delivery enhancement methods were employed in combination with PVA-based hydrogel-forming MN arrays. Using a model drug, ibuprofen (IBU) sodium, the designed systems were assessed in terms of the extent of transdermal delivery. Iontophoresis (ITP) and heat-assisted drug delivery technology were investigated as physical permeation enhancement techniques. Ex vivo studies demonstrated that the ITP (0.5 mA/cm<sup>2</sup>)-mediated combination strategy significantly enhanced the transdermal permeation of IBU sodium over the first 6 h (~ 5.11 mg) when compared to MN alone (~ 1.63 mg) (p < 0.05). In contrast, heat-assisted technology showed almost no promoting effect on transdermal delivery. Furthermore, IBU sodium-containing rapidly dissolving lyophilised and effervescent reservoirs, classified as chemical modification methods, were prepared. Both strategies achieved rapid and effective ex vivo IBU sodium permeation, equating to ~ 78% (30.66 mg) and ~ 71% (28.43 mg) from lyophilised and effervescent reservoirs, respectively. Moreover, in vivo pharmacokinetic studies showed that the IBU sodium plasma concentration within lyophilised and effervescent groups reached a maximum concentration (C<sub>max</sub>) at 4 h (~ 282.15 µg/mL) and 6 h (~ 140.81 µg/mL), respectively. These strategies not only provided rapid achievement of therapeutic levels (10-15 µg/ml), but also resulted in sustained release of IBU sodium for at least 48 h, which could effectively reduce the frequency of administration, thereby improving patient compliance and reducing side effects of IBU sodium.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A quality by design strategy for cocrystal design based on novel computational and experimental screening strategies: part A. 基于新型计算和实验筛选策略的共晶体设计质量设计策略:A 部分。
IF 5.7 3区 医学
Drug Delivery and Translational Research Pub Date : 2024-11-20 DOI: 10.1007/s13346-024-01743-2
Steven A Ross, Adam Ward, Patricia Basford, Mark McAllister, Dennis Douroumis
{"title":"A quality by design strategy for cocrystal design based on novel computational and experimental screening strategies: part A.","authors":"Steven A Ross, Adam Ward, Patricia Basford, Mark McAllister, Dennis Douroumis","doi":"10.1007/s13346-024-01743-2","DOIUrl":"https://doi.org/10.1007/s13346-024-01743-2","url":null,"abstract":"<p><p>While pharmaceutical Cocrystals have long been acknowledged as a promising method of enhancing a drugs bioavailability, they have not yet experienced widespread industrial adoption on the same scale as other multi-component drugs, such as salts and amorphous solid dispersions. This is partly due to the lack of a being no definitive screening strategy to identify suitable coformers, with the most cocrystal screening strategies heavily relying on trial and error approaches, or through utilizing a multiple and often conflicting, computational screening techniques combined with high material consumption experimental techniques. From the perspective of industry, this can often lead to high material waste and increased costs, encouraging the prioritization of more traditional bioenhancement techniques. Here we present a strategy for the selection of multicomponent systems involving computational modelling for screening of drug- former pairs based on a combination of molecular complementarity and H-bond propensity screening. Jet dispensing printing technology is co-opted as a mechanism for High-Throughput Screening (HTS) of different stoichiometric ratios, as a low material consumption screening strategy. This strategy is presented herein as a Quality by Design (QbD) crystal engineering approach, combined with experimental screening methods to produce cocrystals of a novel 5-Lipoxygenase (5-LO) inhibitor, PF-04191834 (PF4). Through this methodology, three new cocrystals were indicated for PF4, confirmed via DSC and XRPD, from less than 50 mg of original testing material. Part B of this study will demonstrate the scalability of this technique continuous extrusion.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing CNC milling parameters for manufacturing of ultra-sharp tip microneedle with various tip angles. 优化数控铣削参数,制造具有不同尖端角度的超尖微针。
IF 5.7 3区 医学
Drug Delivery and Translational Research Pub Date : 2024-11-18 DOI: 10.1007/s13346-024-01740-5
Hong-Phuc Pham, Van-Toi Vo, Thanh-Qua Nguyen
{"title":"Optimizing CNC milling parameters for manufacturing of ultra-sharp tip microneedle with various tip angles.","authors":"Hong-Phuc Pham, Van-Toi Vo, Thanh-Qua Nguyen","doi":"10.1007/s13346-024-01740-5","DOIUrl":"10.1007/s13346-024-01740-5","url":null,"abstract":"<p><p>Microneedle technology has emerged as an advanced method for transdermal drug delivery, which focuses on diverse fabrication techniques to develop microneedles with various models and geometries. This study explores the application of Computer Numerical Control (CNC) milling technology to create microneedle master molds with extremely sharp tips. We examined the effects of two key machining parameters, feed rate and ramp angle, on the tip sharpness of the microneedles. Our results showed that increasing both the feed rate and ramp angle could significantly reduce machining time. However, a higher feed rate also led to larger tip diameters and notable tip defects. Conversely, changes in the ramp angle at a constant feed rate had minimal impact on tip size. We identified an optimal condition balancing cutting time and tip sharpness at a feed rate of 100 mm/min and a ramp angle of 1.5°. Additionally, we assessed the CNC's capability to produce needles with different tip angles. The findings confirm that needles with varying tip angles maintained tip diameters below 10 μm, with needles having a 50° tip angle exhibiting the sharpest tips at approximately 3.3 μm. Further compression, insertion and diffusion tests were conducted to evaluate the performance of needles with different geometries.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142667438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Immunomodulatory potential of rapamycin-loaded mesoporous silica nanoparticles: pore size-dependent drug loading, release, and in vitro cellular responses. 更正:雷帕霉素介孔二氧化硅纳米颗粒的免疫调节潜力:孔径大小与药物装载、释放和体外细胞反应有关。
IF 5.7 3区 医学
Drug Delivery and Translational Research Pub Date : 2024-11-13 DOI: 10.1007/s13346-024-01741-4
Ana M Pérez-Moreno, Carlos J Aranda, María José Torres, Cristobalina Mayorga, Juan L Paris
{"title":"Correction: Immunomodulatory potential of rapamycin-loaded mesoporous silica nanoparticles: pore size-dependent drug loading, release, and in vitro cellular responses.","authors":"Ana M Pérez-Moreno, Carlos J Aranda, María José Torres, Cristobalina Mayorga, Juan L Paris","doi":"10.1007/s13346-024-01741-4","DOIUrl":"https://doi.org/10.1007/s13346-024-01741-4","url":null,"abstract":"","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142616747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Human epidermal growth factor receptor 2(Her2)-targeted pH-responsive MR/NIRF bimodal imaging-mediated nano-delivery system for the diagnosis and treatment of undifferentiated thyroid cancer. 更正:用于诊断和治疗未分化甲状腺癌的人类表皮生长因子受体 2(Her2)靶向 pH 响应 MR/NIRF 双模成像介导的纳米输送系统。
IF 5.7 3区 医学
Drug Delivery and Translational Research Pub Date : 2024-11-13 DOI: 10.1007/s13346-024-01742-3
Qiushi Jia, Fulin Li, Chunxiang Li, Changzhi Guo, Shuang Wu, Liguo Hao, Zhongyuan Li
{"title":"Correction: Human epidermal growth factor receptor 2(Her2)-targeted pH-responsive MR/NIRF bimodal imaging-mediated nano-delivery system for the diagnosis and treatment of undifferentiated thyroid cancer.","authors":"Qiushi Jia, Fulin Li, Chunxiang Li, Changzhi Guo, Shuang Wu, Liguo Hao, Zhongyuan Li","doi":"10.1007/s13346-024-01742-3","DOIUrl":"https://doi.org/10.1007/s13346-024-01742-3","url":null,"abstract":"","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142616744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stable self-assembled oral metformin-bridged nanocochleates against hepatocellular carcinoma. 抗肝细胞癌的稳定自组装口服二甲双胍桥接纳米絮凝物
IF 5.7 3区 医学
Drug Delivery and Translational Research Pub Date : 2024-11-13 DOI: 10.1007/s13346-024-01724-5
Mohamed G El-Melegy, Amal H El-Kamel, Radwa A Mehanna, Ahmed Gaballah, Hoda M Eltaher
{"title":"Stable self-assembled oral metformin-bridged nanocochleates against hepatocellular carcinoma.","authors":"Mohamed G El-Melegy, Amal H El-Kamel, Radwa A Mehanna, Ahmed Gaballah, Hoda M Eltaher","doi":"10.1007/s13346-024-01724-5","DOIUrl":"https://doi.org/10.1007/s13346-024-01724-5","url":null,"abstract":"<p><p>Despite its established anti-diabetic activity, Metformin hydrochloride (MET) has been repurposed for the management of hepatocellular carcinoma (HCC). Owing to MET high aqueous solubility and poor oral permeability, a novel nanoplatform is sought to overcome the current challenges of traditional formulations. In this study, we developed MET-bridged nanocochleates (MET-CO) using a direct bridging method followed by optimization and assessment using various in-vitro and in-vivo pharmacokinetic methods. The optimized nanocochleates MET-CO<sub>DCP</sub> 19, containing dicetyl phosphate (DCP), displayed uniform snail-shaped nano-rolls measuring 136.41 ± 2.11 nm with a PDI of 0.241 ± 0.005 and a highly negative ζ-potential of -61.93 ± 2.57 mV. With an impressive MET encochleation efficiency (> 75%), MET-CO<sub>DCP</sub> 19 exhibited a controlled biphasic release profile, with minimal initial burst followed by prolonged release for 24 h. Importantly, they showed significant MET permeation in both in-vitro Caco-2 and ex-vivo intestinal models compared to non-DCP containing formula or MET solution. The in-vivo oral bioavailability study demonstrated pronounced improvements in the pharmacokinetic parameters with a 5.5 relative bioavailability compared to MET solution. Notably, a significant reduction in IC<sub>50</sub> values in HepG2 cells after 24 h of treatment was observed. Furthermore, the optimized formulation showed a significant downregulation of anti-apoptotic and cancer stemness genes, with 12- and 2-fold lower expression compared to MET solution. These promising results highlight the efficacy of the novel MET-bridged nanocochleates as a stable nanoplatform for enhancing the oral bioavailability of MET and boosting its anticancer potential against HCC.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142616756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual action tofacitinib-loaded PLGA nanoparticles alleviate colitis in an IBD mouse model. 托法替尼负载聚乳酸(PLGA)纳米粒子的双重作用减轻了 IBD 小鼠模型中的结肠炎。
IF 5.7 3区 医学
Drug Delivery and Translational Research Pub Date : 2024-11-11 DOI: 10.1007/s13346-024-01736-1
Nidhi Seegobin, Laura E McCoubrey, Cécile Vignal, Christophe Waxin, Youssef Abdalla, Yue Fan, Atheer Awad, Sudaxshina Murdan, Abdul W Basit
{"title":"Dual action tofacitinib-loaded PLGA nanoparticles alleviate colitis in an IBD mouse model.","authors":"Nidhi Seegobin, Laura E McCoubrey, Cécile Vignal, Christophe Waxin, Youssef Abdalla, Yue Fan, Atheer Awad, Sudaxshina Murdan, Abdul W Basit","doi":"10.1007/s13346-024-01736-1","DOIUrl":"https://doi.org/10.1007/s13346-024-01736-1","url":null,"abstract":"<p><p>Inflammatory bowel disease (IBD) affects over 7 million people worldwide and significant side effects are associated with current therapies such as tofacitinib citrate (TFC), which is linked to increased risks of malignancy and congestive heart issues. To mitigate these systemic adverse effects, localised drug delivery via nano-sized carriers to inflamed gut tissues represents a promising approach. Herein, we aimed to optimise the synthesis of nanoparticles (NPs) using a low molecular weight grade of Poly(lactic-co-glycolic acid) (PLGA) 50:50 loaded with TFC. This approach leverages the dual anti-inflammatory action of TFC and the local production of anti-inflammatory short-chain fatty acids from the degradation of PLGA by colonic gut microbiota. NPs were produced by nanoprecipitation and characterised for their drug release profile in vitro. The efficacy of the enhanced PLGA-TFC NPs was then tested in a C57BL/6 DSS colitis mouse model. The release profile of TFC from the enhanced PLGA NPs showed a 40% burst release within the first hour, followed by up to 80% drug release in the colonic environment. Notably, the degradation of PLGA by colonic gut microbiota did not significantly influence TFC release. In the mouse model, neither PLGA NPs alone nor TFC alone showed significant effects on weight loss compared to the TFC-loaded PLGA NPs, emphasising the enhanced efficacy potential of the combined formulation. Altogether, these results suggest a promising role of NP delivery systems in enhancing TFC efficacy, marking a significant step towards reducing dosage and associated side effects in IBD treatment. This study underscores the potential of PLGA-TFC NPs in providing targeted and effective therapy for IBD.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142616752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoemulsion and nanoemulgel-based carriers as advanced delivery tools for the treatment of oral diseases. 纳米乳液和纳米凝胶载体作为治疗口腔疾病的先进给药工具。
IF 5.7 3区 医学
Drug Delivery and Translational Research Pub Date : 2024-11-05 DOI: 10.1007/s13346-024-01735-2
Deepali Kumari, Varnita Karmakar, Sreenivas Patro Sisinthy, Manisha Pandey, Neha Jain, Bapi Gorain
{"title":"Nanoemulsion and nanoemulgel-based carriers as advanced delivery tools for the treatment of oral diseases.","authors":"Deepali Kumari, Varnita Karmakar, Sreenivas Patro Sisinthy, Manisha Pandey, Neha Jain, Bapi Gorain","doi":"10.1007/s13346-024-01735-2","DOIUrl":"https://doi.org/10.1007/s13346-024-01735-2","url":null,"abstract":"<p><p>Oral diseases rank among the most widespread ailments worldwide posing significant global health and economic challenges affecting around 3.5 billion people, impacting the quality of life for affected individuals. Dental caries, periodontal disease, bacterial and fungal infections, tooth loss and oral malignancies are among the most prevalent global clinical disorders contributing to oral health burden. Traditional treatments for oral diseases often face challenges such as poor drug bioavailability, breakdown of medication in saliva, inconsistent antibiotic levels at the site of periodontal infection as well as higher side effects. However, the emergence of nanoemulgel (NEG) as an innovative drug delivery system offers promising solutions where NEG combines the advantages of both nanoemulsions (NEs) and hydrogels providing improved drug solubility, stability, and targeted delivery. Due to their minuscule size and ability to control drug release, NEGs hold promise for improving treatment of oral diseases, where versatility of these delivery systems makes them suitable for various applications, including topical delivery in dentistry. This review concisely outlines the anatomy of the oral environment and investigates the therapeutic potential of NE-based gels in oral disorder treatment. It thoroughly examines the challenges of drug delivery in the oral cavity and proposes strategies to improve therapeutic efficacy, drawing attention to previous research reports for comparison. Through comprehensive analysis, the review highlights the promising role of NEGs as a novel therapeutic approach for oral health management via research advancements and their clinical translation. Additionally, it provides valuable insights into future research directions and development opportunities in this area.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zolmitriptan niosomal transdermal patches: combating migraine via epigenetic and endocannabinoid pathways and reversal of migraine hypercoagulability. 佐米曲普坦纳米透皮贴片:通过表观遗传学和内源性大麻素途径防治偏头痛并逆转偏头痛的高凝状态。
IF 5.7 3区 医学
Drug Delivery and Translational Research Pub Date : 2024-11-05 DOI: 10.1007/s13346-024-01731-6
Nancy Abdel Hamid Abou Youssef, Gihan Salah Labib, Abeer Ahmed Kassem, Nesrine S El-Mezayen
{"title":"Zolmitriptan niosomal transdermal patches: combating migraine via epigenetic and endocannabinoid pathways and reversal of migraine hypercoagulability.","authors":"Nancy Abdel Hamid Abou Youssef, Gihan Salah Labib, Abeer Ahmed Kassem, Nesrine S El-Mezayen","doi":"10.1007/s13346-024-01731-6","DOIUrl":"https://doi.org/10.1007/s13346-024-01731-6","url":null,"abstract":"<p><p>Conventional zolmitriptan (ZOL) has limited oral bioavailability, many adverse effects, and poor membrane penetrability that negatively influences its accessibility to its 5-HT<sub>1B/1D</sub> receptor binding pocket, located transmemberanous. This work aimed at preparing transdermal ZOL-nanoformulation (niosomes) to surpass these limitations and to explore novel antimigraine mechanisms for ZOL via modulation of the epigenetically-altered chronification genes (RAMP-1, NPTX-2) or microRNAs and affecting the endocannabinoid CB-1/MAPK pathway. The prepared ZOL niosomes (F<sub>sp60/6-1:1</sub>) exhibited %EE of 57.28%, PS of 472.3 nm, PDI of 0.366, and ZP of -26 mV were cast into patch with content uniformity of 93.12%, maintained endurance after 200-times folding, no interaction between its components (FT-IR), a biphasic release pattern and good stability after storage at 4 °C for 6 months. In-vivo ZOL-patch application in rats with nitroglycerin-induced migraine showed significant management of migraine pain symptoms and photophobia assessed behaviorally, decreased brain levels of the trigeminal neuronal activation marker (c-fos), the migraine pain neurotransmitter (CGRP) and the serum levels of different migraine pain markers (substance P, nitric-oxide, and TNF-α). It also significantly decreased RAMP-1, NPTX-2, miR-382-5p, and CB-1/MAPK gene expression reflecting improved efficacy and brain receptors delivery to a much greater extent than conventional ZOL has done. Additionally, this nanoformulation significantly opposed migraine-induced platelet activation and hypercoagulable status in both central and peripheral circulations as evidenced by the significant decrease in adenosine diphosphate, thrombin, factor X, CD41, and Von-Willebrand factor levels assessed peripherally and centrally. TPF<sub>sp60/6-1:1</sub> significantly improved ZOL efficacy and accessibility to brain-receptors to a much greater extent than conventional ZOL-solution.KeywordsEndocannabinoid receptors; Epigenetically-altered genes; Hemostatic pathways; Niosomal patch; Transdermal; Zolmitriptan.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信