{"title":"构建生物相容性纳米载体的研究进展。","authors":"Xuehui Duan, Xinlei Chu, Yan Du, Yixuan Tang","doi":"10.1007/s13346-025-01893-x","DOIUrl":null,"url":null,"abstract":"<p><p>The design of effective drug nanocarriers requires the prevention of adverse biological interactions such as immune activation and cytotoxicity, making superior biocompatibility a critical determinant for clinical success. While existing reviews predominantly focus on the therapeutic applications of nanomedicines, systematic analyses of biocompatibility optimization strategies remain scarce. To address this gap, we present a review of three primary approaches for constructing biocompatible nanocarriers: (1) inert-material-based frameworks, (2) polymer surface engineering techniques, and (3) biomimetic functionalization methodologies. By evaluating the structural designs and biological mechanisms of commonly employed materials, we elucidated how these strategies leverage inherent material properties and biological interaction principles to regulate biocompatibility. Furthermore, we analyzed the advantages and limitations of each approach, offering guidance for selecting the optimal biocompatibility enhancement methods. This work not only synthesizes current advancements in biocompatible nanocarrier development but also provides actionable insights to advance nanomedicine research and clinical translation.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in constructing biocompatible nanocarriers.\",\"authors\":\"Xuehui Duan, Xinlei Chu, Yan Du, Yixuan Tang\",\"doi\":\"10.1007/s13346-025-01893-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The design of effective drug nanocarriers requires the prevention of adverse biological interactions such as immune activation and cytotoxicity, making superior biocompatibility a critical determinant for clinical success. While existing reviews predominantly focus on the therapeutic applications of nanomedicines, systematic analyses of biocompatibility optimization strategies remain scarce. To address this gap, we present a review of three primary approaches for constructing biocompatible nanocarriers: (1) inert-material-based frameworks, (2) polymer surface engineering techniques, and (3) biomimetic functionalization methodologies. By evaluating the structural designs and biological mechanisms of commonly employed materials, we elucidated how these strategies leverage inherent material properties and biological interaction principles to regulate biocompatibility. Furthermore, we analyzed the advantages and limitations of each approach, offering guidance for selecting the optimal biocompatibility enhancement methods. This work not only synthesizes current advancements in biocompatible nanocarrier development but also provides actionable insights to advance nanomedicine research and clinical translation.</p>\",\"PeriodicalId\":11357,\"journal\":{\"name\":\"Drug Delivery and Translational Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery and Translational Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13346-025-01893-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-025-01893-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Advances in constructing biocompatible nanocarriers.
The design of effective drug nanocarriers requires the prevention of adverse biological interactions such as immune activation and cytotoxicity, making superior biocompatibility a critical determinant for clinical success. While existing reviews predominantly focus on the therapeutic applications of nanomedicines, systematic analyses of biocompatibility optimization strategies remain scarce. To address this gap, we present a review of three primary approaches for constructing biocompatible nanocarriers: (1) inert-material-based frameworks, (2) polymer surface engineering techniques, and (3) biomimetic functionalization methodologies. By evaluating the structural designs and biological mechanisms of commonly employed materials, we elucidated how these strategies leverage inherent material properties and biological interaction principles to regulate biocompatibility. Furthermore, we analyzed the advantages and limitations of each approach, offering guidance for selecting the optimal biocompatibility enhancement methods. This work not only synthesizes current advancements in biocompatible nanocarrier development but also provides actionable insights to advance nanomedicine research and clinical translation.
期刊介绍:
The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions.
Research focused on the following areas of translational drug delivery research will be considered for publication in the journal.
Designing and developing novel drug delivery systems, with a focus on their application to disease conditions;
Preclinical and clinical data related to drug delivery systems;
Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes
Short-term and long-term biocompatibility of drug delivery systems, host response;
Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering;
Image-guided drug therapy,
Nanomedicine;
Devices for drug delivery and drug/device combination products.
In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.