Anam Ahsan, Timothy J Barnes, Nicky Thomas, Santhni Subramaniam, Clive A Prestidge
{"title":"增强庆大霉素输送的脂基纳米载体:液晶纳米颗粒和脂质体对抗大肠杆菌生物膜的比较研究。","authors":"Anam Ahsan, Timothy J Barnes, Nicky Thomas, Santhni Subramaniam, Clive A Prestidge","doi":"10.1007/s13346-025-01890-0","DOIUrl":null,"url":null,"abstract":"<p><p>Conventional antibiotic therapies often fail to eradicate bacterial biofilms due to limited penetration, altered microenvironments, and the presence of persister cells, contributing to persistent and recurrent infections. As a result,the growing threat of antibiotic-resistant bacteria, particularly those forming biofilms, underscores the urgent need for alternative therapeutic strategies. Lipid-based drug delivery systems have emerged as effective nanocarriers for antimicrobials, offering a promising strategy to combat bacterial biofilms due to their biomimetic properties, biocompatibility, and ability to navigate the complex physical, chemical, and biological barriers posed by biofilms. In this study, we compared liquid crystal nanoparticles (LCNPs) and liposomes as delivery systems for gentamicin (GEN) against Escherichia coli (E. coli) (ATCC 25922 and ATCC 35218) in both planktonic and biofilm forms. Transmission electron microscopy analysis confirmed the particle size of GEN-loaded LCNPs (~ 200 nm) and GEN-loaded liposomes (~ 160 nm), with cubic-shaped LCNPs and lipid bilayer-structured liposomes which remained stable over three weeks at 4ºC. Loading GEN into lipid-based nanoparticles resulted in a two-fold reduction in minimum inhibitory concentration values, without significantly altering the minimum bactericidal concentration. Notably, GEN-LCNPs led to a significant fourfold (for E. coli ATCC 25922) and threefold (for E. coli ATCC 35218) reduction in inhibitory concentrations in biofilm states compared to unformulated GEN, achieving a minimum biofilm inhibitory concentration (MBIC) of 50 μg/mL and 100 μg/mL (P < 0.0001), respectively. In contrast, liposomes showed only a twofold reduction in MBIC values (100-150 μg/mL) for both bacterial biofilms. GEN-loaded LCNPs also reduced the E. coli ATCC 25922 colony-forming unit count by 5000-fold and 4000-fold, while liposomes with similar particle size did not significantly improve GEN's antimicrobial activity. Moreover, LCNPs improved GEN efficacy regardless of particle size or Pluronic<sup>®</sup> concentration. In conclusion, our findings suggest that GEN-loaded LCNPs demonstrated superior antimicrobial efficacy against E. coli biofilms compared to liposomes, highlighting their potential as effective nanocarriers for combating antibiotic-resistant infections.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lipid-based nanocarriers for enhanced gentamicin delivery: a comparative study of liquid crystal nanoparticles and liposomes against Escherichia coli biofilms.\",\"authors\":\"Anam Ahsan, Timothy J Barnes, Nicky Thomas, Santhni Subramaniam, Clive A Prestidge\",\"doi\":\"10.1007/s13346-025-01890-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Conventional antibiotic therapies often fail to eradicate bacterial biofilms due to limited penetration, altered microenvironments, and the presence of persister cells, contributing to persistent and recurrent infections. As a result,the growing threat of antibiotic-resistant bacteria, particularly those forming biofilms, underscores the urgent need for alternative therapeutic strategies. Lipid-based drug delivery systems have emerged as effective nanocarriers for antimicrobials, offering a promising strategy to combat bacterial biofilms due to their biomimetic properties, biocompatibility, and ability to navigate the complex physical, chemical, and biological barriers posed by biofilms. In this study, we compared liquid crystal nanoparticles (LCNPs) and liposomes as delivery systems for gentamicin (GEN) against Escherichia coli (E. coli) (ATCC 25922 and ATCC 35218) in both planktonic and biofilm forms. Transmission electron microscopy analysis confirmed the particle size of GEN-loaded LCNPs (~ 200 nm) and GEN-loaded liposomes (~ 160 nm), with cubic-shaped LCNPs and lipid bilayer-structured liposomes which remained stable over three weeks at 4ºC. Loading GEN into lipid-based nanoparticles resulted in a two-fold reduction in minimum inhibitory concentration values, without significantly altering the minimum bactericidal concentration. Notably, GEN-LCNPs led to a significant fourfold (for E. coli ATCC 25922) and threefold (for E. coli ATCC 35218) reduction in inhibitory concentrations in biofilm states compared to unformulated GEN, achieving a minimum biofilm inhibitory concentration (MBIC) of 50 μg/mL and 100 μg/mL (P < 0.0001), respectively. In contrast, liposomes showed only a twofold reduction in MBIC values (100-150 μg/mL) for both bacterial biofilms. GEN-loaded LCNPs also reduced the E. coli ATCC 25922 colony-forming unit count by 5000-fold and 4000-fold, while liposomes with similar particle size did not significantly improve GEN's antimicrobial activity. Moreover, LCNPs improved GEN efficacy regardless of particle size or Pluronic<sup>®</sup> concentration. In conclusion, our findings suggest that GEN-loaded LCNPs demonstrated superior antimicrobial efficacy against E. coli biofilms compared to liposomes, highlighting their potential as effective nanocarriers for combating antibiotic-resistant infections.</p>\",\"PeriodicalId\":11357,\"journal\":{\"name\":\"Drug Delivery and Translational Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery and Translational Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13346-025-01890-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-025-01890-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Lipid-based nanocarriers for enhanced gentamicin delivery: a comparative study of liquid crystal nanoparticles and liposomes against Escherichia coli biofilms.
Conventional antibiotic therapies often fail to eradicate bacterial biofilms due to limited penetration, altered microenvironments, and the presence of persister cells, contributing to persistent and recurrent infections. As a result,the growing threat of antibiotic-resistant bacteria, particularly those forming biofilms, underscores the urgent need for alternative therapeutic strategies. Lipid-based drug delivery systems have emerged as effective nanocarriers for antimicrobials, offering a promising strategy to combat bacterial biofilms due to their biomimetic properties, biocompatibility, and ability to navigate the complex physical, chemical, and biological barriers posed by biofilms. In this study, we compared liquid crystal nanoparticles (LCNPs) and liposomes as delivery systems for gentamicin (GEN) against Escherichia coli (E. coli) (ATCC 25922 and ATCC 35218) in both planktonic and biofilm forms. Transmission electron microscopy analysis confirmed the particle size of GEN-loaded LCNPs (~ 200 nm) and GEN-loaded liposomes (~ 160 nm), with cubic-shaped LCNPs and lipid bilayer-structured liposomes which remained stable over three weeks at 4ºC. Loading GEN into lipid-based nanoparticles resulted in a two-fold reduction in minimum inhibitory concentration values, without significantly altering the minimum bactericidal concentration. Notably, GEN-LCNPs led to a significant fourfold (for E. coli ATCC 25922) and threefold (for E. coli ATCC 35218) reduction in inhibitory concentrations in biofilm states compared to unformulated GEN, achieving a minimum biofilm inhibitory concentration (MBIC) of 50 μg/mL and 100 μg/mL (P < 0.0001), respectively. In contrast, liposomes showed only a twofold reduction in MBIC values (100-150 μg/mL) for both bacterial biofilms. GEN-loaded LCNPs also reduced the E. coli ATCC 25922 colony-forming unit count by 5000-fold and 4000-fold, while liposomes with similar particle size did not significantly improve GEN's antimicrobial activity. Moreover, LCNPs improved GEN efficacy regardless of particle size or Pluronic® concentration. In conclusion, our findings suggest that GEN-loaded LCNPs demonstrated superior antimicrobial efficacy against E. coli biofilms compared to liposomes, highlighting their potential as effective nanocarriers for combating antibiotic-resistant infections.
期刊介绍:
The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions.
Research focused on the following areas of translational drug delivery research will be considered for publication in the journal.
Designing and developing novel drug delivery systems, with a focus on their application to disease conditions;
Preclinical and clinical data related to drug delivery systems;
Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes
Short-term and long-term biocompatibility of drug delivery systems, host response;
Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering;
Image-guided drug therapy,
Nanomedicine;
Devices for drug delivery and drug/device combination products.
In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.