Shahriar Namvar, Arash Namaeighasemi, Syed Ibrahim Gnani Peer Mohamed, Ugochukwu Nwosu, Mohammad Arham Khan, Nikita Gupta, Abdul Motakkaber Sarkar, Taha Raja, Ahmad Jaradat, Ilias Papailias, Ksenija Glusac, Samira Siahrostami, Siamak Nejati, Amin Salehi‐Khojin
{"title":"2D Multivariate‐Metal‐Organic Frameworks (2D‐M2OF) for High Yield Ammonia Synthesis from Nitrate","authors":"Shahriar Namvar, Arash Namaeighasemi, Syed Ibrahim Gnani Peer Mohamed, Ugochukwu Nwosu, Mohammad Arham Khan, Nikita Gupta, Abdul Motakkaber Sarkar, Taha Raja, Ahmad Jaradat, Ilias Papailias, Ksenija Glusac, Samira Siahrostami, Siamak Nejati, Amin Salehi‐Khojin","doi":"10.1002/aenm.202405031","DOIUrl":"https://doi.org/10.1002/aenm.202405031","url":null,"abstract":"Ammonia synthesis from nitrate offers a promising approach for both nitrate removal and nitrogen recycling. In this study, a series of 2D multivariate‐metal‐organic frameworks (M<jats:sup>2</jats:sup>OFs) is synthesized, incorporating transition metals such as Co, Ni, Mn, and Ag to enhance these processes. These M<jats:sup>2</jats:sup>OFs exhibit remarkable ammonia production performance, with the highest performance achieved using the quaternary structure exceeding a current density of 1 A cm<jats:sup>−2</jats:sup> at −0.8 V vs RHE, with an ammonia Faradic efficiency (F.E.) of ≈90%, and a yield rate of 68 mg h<jats:sup>−1</jats:sup>cm<jats:sup>−2</jats:sup>. Our findings reveal that the synergy among different metal centers in M<jats:sup>2</jats:sup>OFs provides a new efficient reaction pathway for nitrate reduction via surface hydrogen co‐adsorption, a mechanism not attainable with single‐metal MOFs.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"6 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144669690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abasi Abudulimu, Scott L. Wenner, Adam B. Philips, Chungho Lee, Deng‐Bing Li, Manoj K. Jamarkkatel, Zachary W. Zawisza, Sabin Neupane, Nadeesha P. Katakumbura, Tyler Brau, Scott M. Lambright, Aesha P. Patel, Vijay C. Karade, Ebin Bastola, Yanfa Yan, Michael J. Heben, Randy J. Ellingson
{"title":"Bias‐Dependent Quantum Efficiency Reveals Recombination Pathways in Thin Film Solar Cells","authors":"Abasi Abudulimu, Scott L. Wenner, Adam B. Philips, Chungho Lee, Deng‐Bing Li, Manoj K. Jamarkkatel, Zachary W. Zawisza, Sabin Neupane, Nadeesha P. Katakumbura, Tyler Brau, Scott M. Lambright, Aesha P. Patel, Vijay C. Karade, Ebin Bastola, Yanfa Yan, Michael J. Heben, Randy J. Ellingson","doi":"10.1002/aenm.202501709","DOIUrl":"https://doi.org/10.1002/aenm.202501709","url":null,"abstract":"Identifying where recombination predominantly occurs—whether at the front interface, back interface, or throughout the bulk—is crucial for optimizing CdSeTe solar cells and many other photovoltaic device architectures. Here, a simple and effective diagnostic is demonstrated: measuring external quantum efficiency (QE) under varying forward biases. The drift–diffusion simulations reveal that each recombination pathway leaves a distinct bias‐induced signature in the normalized QE: a progressive drop at long wavelengths for back‐limited devices, a short‐wavelength decline for front‐limited devices, and a relatively uniform decrease across all wavelengths for bulk‐limited devices. These predictions are validated with experiments on As‐doped and Cu‐doped CdSeTe devices, with and without passivation layers or different front buffers. In each case, the observed bias‐dependent QE spectral changes align with the simulated recombination map. Because this method uses standard QE instrumentation, it offers a broadly accessible and cost‐efficient means to diagnose recombination pathways—extending beyond CdSeTe to other thin‐film and emerging solar cell technologies. By pinpointing recombination bottlenecks, researchers and manufacturers can strategically refine doping profiles, passivation schemes, and interface designs to further improve device performance.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"26 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144669659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Full‐Dimensional Penetration Strategy with Degradable PEAI Enables 8.21% Efficiency in Bulk Heterojunction Sb2S3 Solar Cells","authors":"Yang Wang, Dong Yang, Mengqi Jin, Zhiyang Wan, Wenbo Cao, Faisal Naveed, Jiajin Kuang, Chaofan Zheng, Chaoyang Wang, Junwei Chen, Yingying Dong, Mingtai Wang, Chong Chen","doi":"10.1002/aenm.202502805","DOIUrl":"https://doi.org/10.1002/aenm.202502805","url":null,"abstract":"Antimony trisulfide (Sb<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub>) is a promising low‐cost photovoltaic material, but practical Sb<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> solar cells suffer from multiple defects, anisotropic transport, and interfacial energy‐level mismatches, limiting power conversion efficiency (<jats:italic>η</jats:italic>) to 6%‐7%. Herein, a degradable full‐dimensional penetration passivation strategy using phenethylammonium iodide (PEAI) is proposed to synergistically address these issues. PEAI pretreatment of amorphous Sb<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> films enables [<jats:italic>hk</jats:italic>1]‐oriented crystallization, full‐dimensional defect passivation (bulk and interfaces), and dual‐interface energy‐level reconstruction via Cd‐I and Sb─I bonding. The PEAI reduces CdS surface energy and preferentially adsorbs on Sb<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> (211) planes, promoting [<jats:italic>hk</jats:italic>1] orientation and enhancing carrier transport. Moreover, the penetrated PEAI leads to a 3.7‐fold increase in carrier lifetime, verifying effective defect suppression. The resultant bulk heterojunction (BHJ) solar cells achieve a <jats:italic>η</jats:italic> of 8.21%, which is the highest efficiency of BHJ Sb<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> solar cells. This work establishes a quadruple‐integrated paradigm (defect passivation, orientation control, energy‐level optimization, and architecture design), providing a universal roadmap for high‐efficiency, sustainable photovoltaics.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"11 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144669638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chang Liu, Jianming Meng, Yulai Lin, Ya Sai, Jun Yan, Yu Song, Jieshan Qiu
{"title":"Proton Donation and Surface Armor Effects of Aluminum Ion Additive Enabling Long‐Life and High‐Voltage Aqueous Proton Batteries","authors":"Chang Liu, Jianming Meng, Yulai Lin, Ya Sai, Jun Yan, Yu Song, Jieshan Qiu","doi":"10.1002/aenm.202502963","DOIUrl":"https://doi.org/10.1002/aenm.202502963","url":null,"abstract":"Aqueous proton batteries (APBs) have been regarded as promising candidates for large‐scale energy storage owing to their environmental friendliness and intrinsic safety. However, the commonly‐used strong acid electrolytes in APBs often lead to dissolution and corrosion of the electrodes. To address these challenges, a new mildly acidic CH<jats:sub>3</jats:sub>COONa electrolyte with Al<jats:sub>2</jats:sub>(SO<jats:sub>4</jats:sub>)<jats:sub>3</jats:sub> addition is proposed for stable APBs. The Al<jats:sup>3</jats:sup>⁺ additive in APBs plays a dual role of both proton donors to continuously sustain proton supply for working electrodes and the formation of cathode‐electrolyte interphases (CEI) on the cathode surface to prevent the dissolution and structural collapse of electroactive materials. The Co–Ni double hydroxide (CoNiDH) material exhibits a proton‐dominated charge storage mechanism in the hybrid electrolyte with a high discharge capacity of 230 mAh g<jats:sup>−1</jats:sup> with excellent rate capability. Additionally, an APB assembled with the hybrid electrolyte achieves a high cell voltage of 2.2 V, an impressive energy density of 94.7 Wh kg<jats:sup>−1</jats:sup>, and a prolonged cycling life of over 8500 cycles, outperforming most reported APBs. This mild electrolyte design is highly expected to broaden the range of electrode materials suitable for APBs, providing new opportunities for the development of high‐performance aqueous batteries.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"12 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144669637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xinyang Chen, Ming Jiang, Xinyu Du, Xuejie Gao, Kun Feng, Yulong Liu, Xiaofei Yang, Runcang Sun, Dan Luo, Zhongwei Chen
{"title":"Li2O‐Enhanced Solid Electrolyte Interphase Surpassing LiF‐Only SEI for High‐Performance All‐Solid‐State Li Batteries","authors":"Xinyang Chen, Ming Jiang, Xinyu Du, Xuejie Gao, Kun Feng, Yulong Liu, Xiaofei Yang, Runcang Sun, Dan Luo, Zhongwei Chen","doi":"10.1002/aenm.202502589","DOIUrl":"https://doi.org/10.1002/aenm.202502589","url":null,"abstract":"Solid‐state lithium batteries face critical challenges in achieving stable electrode‐electrolyte interfaces, where the formation characteristics and architectural properties of the solid electrolyte interphase (SEI) critically influence battery performance. While LiF‐rich SEI layers have been widely studied for their ability to enhance interfacial stability, the contribution of Li<jats:sub>2</jats:sub>O—a key component in improving ionic conductivity and mechanical robustness—has been largely overlooked. This work tackles this deficiency by developing a cellulose acetate (CA)‐modified electrolyte system, which facilitates the cooperative generation of LiF and Li<jats:sub>2</jats:sub>O within the SEI layer. Consequently, the CA‐modified poly(ethylene oxide) (PEO)‐based electrolyte enabled exceptional electrochemical stability, ensuring reliable performance under elevated voltages (reaching 4.3 V) and across a wide temperature range (−10 °C–60 °C). Such improvements are ascribed to the synergistic LiF‐Li<jats:sub>2</jats:sub>O composite SEI layer, which enhances interfacial ion transport and mechanical stability. Furthermore, the scalability of this approach was demonstrated in practical pouch cells, which maintained a discharge capacity of 132 mAh g<jats:sup>−1</jats:sup> over 300 cycles at 0.1 C, exhibiting an average Coulombic efficiency of 99.79%. This work highlights the critical role of Li<jats:sub>2</jats:sub>O in complementing LiF‐dominated SEI layers, offering a promising pathway toward the advancement of high‐efficiency all‐solid‐state energy storage systems.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"52 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144669640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Self‐Powered Mechanical Nanofluidic Generators Based on Gradient Charge‐Modified Sustainable Wood‐Derived Nanochannels","authors":"Lizhen Chen, Jade Poisson, Yifei Zhan, Cheng Li, Minghao Zhang, Kai Zhang","doi":"10.1002/aenm.202502153","DOIUrl":"https://doi.org/10.1002/aenm.202502153","url":null,"abstract":"The growing demand for self‐powered technology in portable and wearable electronics has spurred significant advancements in energy harvesting systems. However, conventional mechanical generators based on triboelectric and piezoelectric effects are limited by short discharge durations, despite achieving high output potentials. Here, a mechanical nanofluidic generator (MNG) is reported with gradient charge‐modified nanochannels, designed for mechanical energy harvesting. The MNG features highly aligned nanochannels with engineered surface charges, enabling a peak output voltage of 10.58 ± 1.29 V and a prolonged energy release time of 675.80 ± 112.08 s, with orders of magnitude longer than traditional generators that normally discharge in milliseconds to microseconds. This superior performance is attributed to the synergistic effects of gradient surface charge modification and enhanced interactions between transport ions and surface charges. This performance is attributed to the synergistic effects of surface charge gradients and strengthened ion–surface interactions, underscoring the MNG's potential for next‐generation self‐powered systems.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"15 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144669639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Grotthuss Mechanism for Stable Zinc Anodes: Time‐Resolved pH Buffering in Aqueous Batteries","authors":"Xuefeng Xu, Shuo San, Zhenjie Lu, Danil Boukhvalov, Liming Dai, Kai Liu, Chenchen Fang, Yaya Wang, Xiaoyuan Zhang, Huiru Duan, Tiannan Su, Rui Gao, Zhuolun Li, Wenyao Zhang, Pan Xiong, Yongsheng Fu, Jingwen Sun, Junwu Zhu","doi":"10.1002/aenm.202501529","DOIUrl":"https://doi.org/10.1002/aenm.202501529","url":null,"abstract":"In zinc ion batteries, the curtailed lifespan and diminished Coulombic efficiency are primarily ascribed to the hydrogen evolution reaction, surface corrosion, and rampant dendrites, all related to unstable interfacial pH at the anode. To tackle these challenges, hydrogen‐bonded organic frameworks (HOFs) are designed possessing outstanding zincophilic and hydrogen storage capabilities on the surface of Zn, thereby creating a dendrite‐free anode (MACA@Zn). By leveraging the innate and reversible proton‐hopping mechanism of MACA, the interfacial pH at the anode is able to be controlled. In situ scanning electrochemical microscopy has demonstrated a time‐resolved local pH buffering effect. Moreover, the presence of MACA induces preferential growth of the (002) plane, resulting in a uniform and dense Zn deposition layer. Consequently, the Zn//Zn cell with MACA@Zn anode delivers an exceptional cycling stability of ≈2000 h at 5 mA cm<jats:sup>−2</jats:sup> and 1 mAh cm<jats:sup>−2</jats:sup>, with a high cumulative plating capacity of 4950 mAh cm<jats:sup>−2</jats:sup>. When paired with an α‐MnO<jats:sub>2</jats:sub> cathode, the cell retains a specific capacity of 70.4 mAh g<jats:sup>−1</jats:sup> after 990 cycles, demonstrating a capacity retention of 44.87%. This research emphasizes the multifunctional protective effects of HOFs on the anode surface and offers critical insights for advancing the development and real‐world implementation of ZIBs.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"15 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144669660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Junfeng Huang, Xiao Xu, Yusheng Yan, Yong Zheng, Yuechao Yao, Zhangjian Li, Yan Yan, Kwun Nam Hui, Jizhao Zou, Mingkai Liu
{"title":"Facile Microwave Synthesis of Kilogram-Scale Electrocatalysts with Nanocarbons Bridged Cobalt Active Sites for Enhanced Oxygen Electrocatalysis (Adv. Energy Mater. 27/2025)","authors":"Junfeng Huang, Xiao Xu, Yusheng Yan, Yong Zheng, Yuechao Yao, Zhangjian Li, Yan Yan, Kwun Nam Hui, Jizhao Zou, Mingkai Liu","doi":"10.1002/aenm.202570117","DOIUrl":"https://doi.org/10.1002/aenm.202570117","url":null,"abstract":"<p><b>Oxygen Electrocatalysis</b></p><p>In article number 2500360, Yong Zheng, Jizhao Zou, Mingkai Liu, and co-workers report a microwave-synthesis strategy for kilogram-scale production of high-performance oxygen reduction and evolution reaction dual electrocatalysts. The synthesized materials feature nanocarbon-bridged Co single-atom/nanoparticle dual sites that synergistically promote oxygen activation, significantly lowering reaction overpotentials. This synthetic strategy can be extended to other porous precursors, bridging the gap between atomic-level precision and industrial scalability in sustainable energy technologies.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"15 27","pages":""},"PeriodicalIF":24.4,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aenm.202570117","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144635341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hang Li, Li Wang, Jinkun Wang, Zhibei Liu, Aimin Du, Xiangming He
{"title":"Layered-to-Layered Synthesis of High-Performance Nickel-Rich Layered Cathodes via Low-Temperature Oxidation of Layered Hydroxide Precursor (Adv. Energy Mater. 27/2025)","authors":"Hang Li, Li Wang, Jinkun Wang, Zhibei Liu, Aimin Du, Xiangming He","doi":"10.1002/aenm.202570120","DOIUrl":"https://doi.org/10.1002/aenm.202570120","url":null,"abstract":"<p><b>Layered Cathodes</b></p><p>In article number 2500325, Li Wang, Aimin Du, Xiangming He, and co-workers introduce a novel two-step low-temperature oxidation and lithiation method for synthesizing high-performance nickel-rich layered oxide cathodes (LiNi<sub>0.9</sub>Co<sub>0.05</sub>Mn<sub>0.05</sub>O<sub>2</sub>). By preserving the MO<sub>6</sub> framework through ambient oxidation and mild hydrothermal lithiation (≤90°C), the method achieves a discharge capacity of 239.3 mAh g<sup>−1</sup> at 0.1C and an initial Coulombic efficiency of 95.76%, surpassing conventional high-temperature sintering. The approach minimizes structural defects, enhances crystallinity via post-annealing, and demonstrates versatility across Ni-rich systems. This breakthrough advances lithium-ion battery technology by optimizing energy density and mitigating irreversible capacity loss, offering scalable, defect-controlled cathode synthesis.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"15 27","pages":""},"PeriodicalIF":24.4,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aenm.202570120","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144635343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}