Wubin Du, Xianming Xia, Shoumeng Yang, Shengnan He, Yu Yao, Hai Yang, Hongge Pan, Zhijun Wu, Xianhong Rui, Yan Yu
{"title":"Advanced Solid Electrolyte Interphase Engineering for Stable Sodium Metal Anodes","authors":"Wubin Du, Xianming Xia, Shoumeng Yang, Shengnan He, Yu Yao, Hai Yang, Hongge Pan, Zhijun Wu, Xianhong Rui, Yan Yu","doi":"10.1002/aenm.202501498","DOIUrl":null,"url":null,"abstract":"Sodium (Na) metal is viewed as a promising anode material for advanced high‐energy rechargeable batteries own to its high theoretical capacity, low electrochemical potential and abundant availability. Nevertheless, the unstable solid electrolyte interphase (SEI) results in low Coulombic efficiency, a limited cycling life, and dendrite‐related issues. Therefore, constructing an excellent SEI is crucial for improving the performance of Na metal anodes through appropriate strategies. This review first discusses the challenges faced by Na metal anodes in practical applications. It then summarizes recent advancement in strategies for constructing stable SEIs, including electrolyte regulation, artificial SEI engineering and substrate modification strategies. Last, review presents the perspectives on future research aimed at the practical application of Na metal anodes in high‐energy‐density Na metal batteries.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"14 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202501498","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sodium (Na) metal is viewed as a promising anode material for advanced high‐energy rechargeable batteries own to its high theoretical capacity, low electrochemical potential and abundant availability. Nevertheless, the unstable solid electrolyte interphase (SEI) results in low Coulombic efficiency, a limited cycling life, and dendrite‐related issues. Therefore, constructing an excellent SEI is crucial for improving the performance of Na metal anodes through appropriate strategies. This review first discusses the challenges faced by Na metal anodes in practical applications. It then summarizes recent advancement in strategies for constructing stable SEIs, including electrolyte regulation, artificial SEI engineering and substrate modification strategies. Last, review presents the perspectives on future research aimed at the practical application of Na metal anodes in high‐energy‐density Na metal batteries.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.