Yutong Zhang, Yan Zhang, Xingpeng Liu, Ziqi Geng, Huan Wang, Zhenhui Xu, Zongcheng Miao, Qiuju Liang, Jiangang Liu
{"title":"Controlling the Third Component Distribution Toward High-Efficient Ternary Organic Solar Cells","authors":"Yutong Zhang, Yan Zhang, Xingpeng Liu, Ziqi Geng, Huan Wang, Zhenhui Xu, Zongcheng Miao, Qiuju Liang, Jiangang Liu","doi":"10.1002/aenm.202406136","DOIUrl":"https://doi.org/10.1002/aenm.202406136","url":null,"abstract":"Ternary organic solar cells (T-OSCs) based on energy transfer can significantly boost the light absorption efficiency, thereby improving their power conversion efficiency (PCE). However, the uncontrolled distribution of the third component in bulk heterojunction (BHJ) device often results in low energy transfer efficiency (<i>E</i><sub>FRET</sub>), and also tends to compromise the interpenetrating network structure of active layer. Herein, a localized deposition strategy is proposed and establish a bulk heterojunction with a controlled distribution of the third component (CDBHJ). Take PM6:Y6:IBC-F for example, IBC-F serves as the energy donor and PM6 as the energy acceptor. Compared with BHJ-based devices, the proportion of IBC-F within the PM6 phase increases from 25.1% to 72.7%, enhancing <i>E</i><sub>FRET</sub> from 46.5% to 66.8% in CDBHJ-based devices. Furthermore, the localized deposition strategy improves crystallization and phase separation kinetics during film-forming process. Thus, the CDBHJ-based device exhibits superior exciton generation, diffusion, and dissociation process, along with higher and more balanced charge transport. Consequently, the CDBHJ-based device achieves PCE of 18.29%, which ranks among the best for PM6:Y6-based T-OSCs. This work demonstrates the effectiveness of the localized deposition strategy in controlling the distribution of the third component, presenting an innovative pathway for the development of highly efficient T-OSCs.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"7 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143539145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Boosting Spiro-OMeTAD Doping via Structurally Asymmetrical Nanohorns for High-Performance Carbon-Based Perovskite Solar Cells","authors":"Yanying Shi, Guanghao Meng, Yudi Wang, Wenrui Li, Hongru Ma, Ruiting Wang, Siao Li, Zhongyuan Zhang, Ziyang Tian, Yufa Li, Linghui Zhang, Bingying Xu, Zicheng Liu, Tao Feng, Jiashuo Cheng, Lida Liu, Dequan Cao, Wenming Tian, Yantao Shi","doi":"10.1002/aenm.202405355","DOIUrl":"https://doi.org/10.1002/aenm.202405355","url":null,"abstract":"The doping level of 2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene (Spiro-OMeTAD), a commonly used hole transport layer in perovskite solar cells (PSCs), is crucial for its electrical conductivity and the final photovoltaic performance. The routine oxygen-oxidation doping strategy falls short in achieving high-level doping due to the sparsity and random distribution of dopants within the solid Spiro-OMeTAD film. Here the use of carbon nanohorns (CNH) as a promoter to significantly enhance the doping level of Spiro-OMeTAD is reported. The unique asymmetry and polar structure of CNH not only enable effective charge transfer between CNH and Spiro-OMeTAD, also exhibit confinement effect to trap Li<sup>+</sup> ions and O<sub>2</sub>, promoting the consecutive chemical doping processes. Corresponding carbon-based PSCs achieved a power conversion efficiency of 23.24% (22.51% certified), and demonstrated exceptional long-term durability, retaining 95.3% of the initial PCE (power conversion efficiency) after 1500 h of tracking at maximum power point (MPP) under 100 mW cm<sup>−2</sup> illumination.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"1 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143546015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Selective Synthesis of Ethane from Methane by a Photocatalytic Chemical Cycle Process (Adv. Energy Mater. 9/2025)","authors":"Jianlong Yang, Lunqiao Xiong, Chao Wang, Lei Luo, Liqiang Jing, Natalia Martsinovich, Junwang Tang","doi":"10.1002/aenm.202570047","DOIUrl":"https://doi.org/10.1002/aenm.202570047","url":null,"abstract":"<p><b>Value-Added Chemicals</b></p><p>In article number 2404202, Junwang Tang and co-workers present a photocatalytic chemical cycle process. Under light irradiation, CH<sub>4</sub> is converted to C<sub>2</sub>H<sub>6</sub> over a Co<sub>0.2</sub>Pd<sub>1.8</sub>-TiO<sub>2</sub> catalyst, in which the lattice oxygen of the catalyst is consumed and then replenished with air, thereby restoring the catalyst's activity. This process enhances the selectivity and safety of methane partial oxidation by separating O<sub>2</sub> from CH<sub>4</sub> during the chemical cycle.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"15 9","pages":""},"PeriodicalIF":24.4,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aenm.202570047","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143535787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fluorine-Free Cosolvent Chemistry Empowering Sodium-Sulfurized Polyacrylonitrile Batteries","authors":"Min-Hao Pai, Arumugam Manthiram","doi":"10.1002/aenm.202500026","DOIUrl":"https://doi.org/10.1002/aenm.202500026","url":null,"abstract":"Localized high-concentration electrolytes (LHCE) show great promise for room-temperature sodium-sulfur batteries. However, the majority of diluents in LHCE systems consist of fluorinated ethers, which are not only dense and expensive but also demonstrate poor reductive stability with sodium metal. Herein, a low-density, non-fluorinated ether electrolyte is presented that demonstrates localized high-concentration behavior. This feature is driven by the weak solvating capabilities of 1,2-dimethoxypropane (DMP) and the ultra-weak solvating nature of cyclopentyl methyl ether (CPME). Impressively, the fluorine-free CPME cosolvent acts as a diluent within the electrolyte. Therefore, the electrolyte achieves a tailored solvation structure characterized by anion-rich species, which fosters the development of a resilient inorganic-rich SEI with superior Na-ion transport. Consequently, with a high sulfur-content sulfurized polyacrylonitrile (SPAN, S content > 45% in SPAN) loading of 4.4 mg cm⁻<sup>2</sup> (sulfur loading: 2 mg cm⁻<sup>2</sup>) and a low electrolyte-to-SPAN ratio of 9 µL mg⁻¹ (E/SPAN = 9), the Na-SPAN cell demonstrates remarkable reversibility of 530 mA h g<sub>sulfur</sub>⁻¹ after 200 cycles at C/5 rate. This performance surpasses the majority of state-of-the-art Na-SPAN ether-based electrolyte systems reported to date. Hence, this work presents a novel approach for designing cost-effective, high-performance electrolytes for stable, practical Na-SPAN batteries.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"130 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143539146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Moritz Kindelmann, Ivan Povstugar, Severin Kuffer, Dylan Jennings, Julian N. Ebert, Moritz L. Weber, M. Pascal Zahler, Sonia Escolastico, Laura Almar, Jose M. Serra, Payam Kaghazchi, Martin Bram, Wolfgang Rheinheimer, Joachim Mayer, Olivier Guillon
{"title":"Controlling Grain Boundary Segregation to Tune the Conductivity of Ceramic Proton Conductors (Adv. Energy Mater. 9/2025)","authors":"Moritz Kindelmann, Ivan Povstugar, Severin Kuffer, Dylan Jennings, Julian N. Ebert, Moritz L. Weber, M. Pascal Zahler, Sonia Escolastico, Laura Almar, Jose M. Serra, Payam Kaghazchi, Martin Bram, Wolfgang Rheinheimer, Joachim Mayer, Olivier Guillon","doi":"10.1002/aenm.202570043","DOIUrl":"https://doi.org/10.1002/aenm.202570043","url":null,"abstract":"<p><b>Ceramic Proton Conductors</b></p><p>In article number 2404410, Moritz Kindelmann, Olivier Guillon, and co-workers illustrate how controlled acceptor dopant segregation at grain boundaries in a polycrystalline ceramic proton conductor can boost the transport of mobile species (here protons) from one grain to the other, increasing the performance for electrochemical applications like fuel cells and electrolyzers.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"15 9","pages":""},"PeriodicalIF":24.4,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aenm.202570043","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143535905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mateusz Dyksik, Michal Baranowski, Joshua J. P. Thompson, Zhuo Yang, Martha Rivera Medina, Maria Antonietta Loi, Ermin Malic, Paulina Plochocka
{"title":"Steric Engineering of Exciton Fine Structure in 2D Perovskites (Adv. Energy Mater. 9/2025)","authors":"Mateusz Dyksik, Michal Baranowski, Joshua J. P. Thompson, Zhuo Yang, Martha Rivera Medina, Maria Antonietta Loi, Ermin Malic, Paulina Plochocka","doi":"10.1002/aenm.202570044","DOIUrl":"https://doi.org/10.1002/aenm.202570044","url":null,"abstract":"<p><b>2D Perovskites</b></p><p>In article number 2404769, Mateusz Dyksik, Paulina Plochocka, and co-workers present a comprehensive study on the interplay between the excitonic fine structure of layered perovskites and distortions in the perovskite lattice, the latter of which can be controlled via the steric size of the molecular cation. Here, the spider plays the role of the organic cation, manipulating and distorting the structure of its perovskite prey before storing it for later. The light entering the cave represents the experimental optical probes used in this work, unravelling the secrets of these perovskites.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"15 9","pages":""},"PeriodicalIF":24.4,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aenm.202570044","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143535906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ok Sung Jeon, Dong Pyo Hong, Yunju La, Ji Hye Lee, Myung Sik Choi, Sang Yoon Park, Young Joon Yoo, Se Hun Lee
{"title":"Tailoring Entangled Sodium Alginate in Quasi-Solid Electrolyte to Augment Air Pockets for Superior Zn-Air Battery at Low Temperature","authors":"Ok Sung Jeon, Dong Pyo Hong, Yunju La, Ji Hye Lee, Myung Sik Choi, Sang Yoon Park, Young Joon Yoo, Se Hun Lee","doi":"10.1002/aenm.202500796","DOIUrl":"https://doi.org/10.1002/aenm.202500796","url":null,"abstract":"The increasing impact of climate change along with technological advancements is driving the need for reliable and efficient rechargeable batteries which can perform in low-temperature conditions. Rechargeable zinc-air batteries (ZABs) have emerged as promising candidates that offer advantages such as high energy density, low cost, safety, and environmental friendliness. However, achieving high power density and cycling stability with low catalysts in ZABs at low temperatures remains a challenge. Herein, this study proposes the critical role of air pockets at the electrolyte-cathode interface to amplify the triple-phase boundary (TPB) and enhance ZAB power output. A quasi-solid electrolyte (QSE) based on sodium alginate (SA) is developed to address these challenges. The high concentration of KOH inhibited SA ionization which resulted in entangled SA aggregates in the QSE. The deformability and form stability of the QSE helped generate and maintain numerous air pockets at the electrolyte-cathode interface. Despite extremely low catalyst loading of 0.04 mg<sub>Pt</sub> cm<sup>−2</sup>, the ZAB achieved a power density of 233 mW cm<sup>−2</sup> at room temperature and excellent cycling stability over 480 h at −20 °C. This work provides valuable insights into designing efficient ZABs for low-temperature applications, offering a promising solution for harsh climate environments.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"67 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143546012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huibin Liu, Xiaohan Hou, Qicheng Zhang, Wenchao Peng, Yang Li, Xiaobin Fan
{"title":"Representative By-Products of Aqueous Zinc-Vanadium Batteries: Origins, Roles, Strategies, and Prospects","authors":"Huibin Liu, Xiaohan Hou, Qicheng Zhang, Wenchao Peng, Yang Li, Xiaobin Fan","doi":"10.1002/aenm.202406171","DOIUrl":"https://doi.org/10.1002/aenm.202406171","url":null,"abstract":"Aqueous zinc-ion batteries (AZIBs) are of interest in next-generation energy storage applications owing to their safety, environmental friendliness, and cost-effectiveness. Vanadium-based oxides are promising cathodes for AZIBs due to their appropriate structure and multielectron redox processes. Although hundreds of studies are devoted to understanding the mechanisms and developing high-performance vanadium-based cathodes, many puzzles and controversies still exist, especially regarding the two representative by-products, basic zinc salt (BZS) and zinc pyrovanadate (ZVO). BZS and ZVO are often observed on vanadium-based cathode and zinc anode during cycling, directly affecting battery performance. However, the two by-products’ controversial and unclassified insights and unclear mechanisms have severely limited the Zn-V batteries’ progress. Therefore, this review aims to exhaustively elucidate the “past and present” of the two by-products following a logical sequence of origin, role, inhibition strategy, and prospect. Notably, the review incorporates substantial comments and understandings of the long-neglected controversial issues related to the by-products, especially the BZS-related energy storage mechanisms and ZVO-related dissolution mechanisms. This review is expected to provide scientific guidelines for future optimization and commercialization of Zn-V batteries.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"55 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143532395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dalin Sun, Yan Zhang, Yuyue Zhou, Yingxia Nie, Lin Ban, Deyu Wu, Song Yang, Heng Zhang, Cheng Li, Kai Zhang
{"title":"Photocatalytic and Electrochemical Synthesis of Biofuel via Efficient Valorization of Biomass","authors":"Dalin Sun, Yan Zhang, Yuyue Zhou, Yingxia Nie, Lin Ban, Deyu Wu, Song Yang, Heng Zhang, Cheng Li, Kai Zhang","doi":"10.1002/aenm.202406098","DOIUrl":"https://doi.org/10.1002/aenm.202406098","url":null,"abstract":"The excessive use of fossil fuels has significantly increased environmental stress, driving the need for green, sustainable biofuel alternatives. Innovations in photocatalysis (PC), electrocatalysis (EC), and their synergistic approaches, like photothermal catalysis (PTC), photo-enzymatic catalysis (PENC), and photoelectrocatalysis (PEC), offer advanced methods for biomass conversion into biofuels, surpassing traditional limitations. However, comprehensive research on these conversion processes is still lacking. This review aims to systematically analyze recent progress in catalytic strategies for biomass-to-biofuel conversion. It first describes the characteristics, types, and properties of biomass and biofuels. Then, it explores the fundamental mechanisms of PC, EC, and combined catalytic technologies. The chemical pathways involved in conversion—such as transesterification, esterification, hydrogenation, decarboxylation, bond cleavage, and cyclization—are examined. Efficient catalyst design for specific reactions and factors influencing catalyst efficiency and conversion rates are also discussed. Additionally, this paper assesses the environmental impact and economic benefits of green catalytic technology in biofuel production, offering a valuable reference for biomass energy research and application. It addresses challenges in technology deployment for biofuel production and suggests future research directions, aiming to provide scientific guidance and technical support for the development of this vital field. In summary, this review underscores the importance of continued innovation and research in catalytic biomass conversion to promote sustainable biofuel solutions.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"45 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143532396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hyeokjun Jang, Mu Geun Son, Duho Han, Jinyeong Choi, Jin Hong Lee, Pilgun Oh, Joonhee Kang, Minjoon Park
{"title":"Revisiting Membrane-Free Zn–Mn Redox Flow Batteries: An Innovative Universal Aspartic Acid Additive for Superior Stability","authors":"Hyeokjun Jang, Mu Geun Son, Duho Han, Jinyeong Choi, Jin Hong Lee, Pilgun Oh, Joonhee Kang, Minjoon Park","doi":"10.1002/aenm.202500621","DOIUrl":"https://doi.org/10.1002/aenm.202500621","url":null,"abstract":"An all-aqueous membrane-free Zn–Mn redox flow battery utilizing deposition chemistry can be an excellent alternative to conventional aqueous redox flow batteries for reducing costs and improving stability. In the neutral/mildly acidic electrolyte environment of aqueous Zn–Mn redox flow batteries, the anode still suffers from issues such as zinc dendrite growth and corrosion, while the cathode struggles with poor reversibility. The same issues arise in membrane-free Zn–Mn redox flow batteries that use a combined electrolyte, where both anolyte and catholyte are combined. Therefore, it is possible to simultaneously address the issues of both the anode and cathode by using a single additive in the combined electrolyte. Here, aspartic acid is introduced as a universal additive for an all-aqueous membrane-free Zn–Mn redox flow battery. In the combined electrolyte, aspartic acid bonded to the Zn anode surface, Zn<sup>2+</sup> ions, and Mn<sup>2+</sup> ions, resolving almost all the side reactions. Impressively, membrane-free Zn–Mn redox flow battery with aspartic acid demonstrated remarkable cycling stability of 300 cycles at an areal capacity of 10 mAh cm<sup>−2</sup>. A new efficient strategy is proposed for controlling overall side reactions by the simple addition of a single additive in the integrated electrolyte with this report.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"36 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143532397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}