Advanced Energy Materials最新文献

筛选
英文 中文
Synergistic Cathode/Anode Interphase Stabilization via Single‐Cosolvent Engineering for Fast‐Charging and Durable Sodium‐Ion Batteries 基于单一共溶剂工程的快速充电和耐用钠离子电池阴极/阳极间相协同稳定
IF 27.8 1区 材料科学
Advanced Energy Materials Pub Date : 2025-09-11 DOI: 10.1002/aenm.202502024
Dengke Liu, Weijun Zhang, Xinren Zhang, Duo Weng, Zhigang Liu, Xu Peng, Jiangan Wang, Hongqiang Wang, Fei Xu
{"title":"Synergistic Cathode/Anode Interphase Stabilization via Single‐Cosolvent Engineering for Fast‐Charging and Durable Sodium‐Ion Batteries","authors":"Dengke Liu, Weijun Zhang, Xinren Zhang, Duo Weng, Zhigang Liu, Xu Peng, Jiangan Wang, Hongqiang Wang, Fei Xu","doi":"10.1002/aenm.202502024","DOIUrl":"https://doi.org/10.1002/aenm.202502024","url":null,"abstract":"Sodium‐ion batteries are competitive for grid‐scale energy storage, while face cathode/anode interfacial instability that undermines cycle durability in full cells. Tetrahydrofuran (THF)‐modified carbonate electrolyte is proposed that synergistically stabilizes both interphases through anion‐enriched solvation chemistry and in situ adaptive polymeric film engineering. The weakly coordinated THF facilitates Na<jats:sup>+</jats:sup>‐anion interaction in solvation sheath, fostering inorganic‐dominated solid–electrolyte‐interphase (SEI). Concurrently, trace water triggers THF's in situ ring‐opening polymerization, generating flexible polymer coatings that mechanically reinforce the fragile SEI at anode side while mitigating transition metal species dissolution and structural degradation at cathode side. Such dual‐interphase stabilization addresses a critical oversight in previous studies emphasizing solely on anode interphase optimization, and enables rapid Na<jats:sup>+</jats:sup> migration without compromising ionic conductivity and transference number for fast charging. The optimized full cells achieve 3.8‐fold enhanced capacity retention over 150 cycles versus conventional electrolyte. Remarkably, the capacity is up to 207 mAh g<jats:sup>−1</jats:sup> at 5C contrasting complete failure in THF‐free system. Proof‐of‐concept Ah pouch cells show 90% capacity retention upon 200 cycles, which is rarely‐reported via cosolvent engineering in terms of specific energy and cycle life. The work establishes a paradigm shifting electrolyte engineering strategy with synchronized interfacial stabilization toward practical deployment.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"66 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145035149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revitalizing Sulfide Solid Electrolytes for All‐Solid‐State Batteries: Dry‐Air Exposure and Microwave‐Driven Regeneration 全固态电池硫化物固体电解质的再生:干燥空气暴露和微波驱动再生
IF 27.8 1区 材料科学
Advanced Energy Materials Pub Date : 2025-09-11 DOI: 10.1002/aenm.202502981
Boyeong Jang, Yong Bae Song, Ki Heon Baeck, Jongyoung Lee, Soon‐Jae Jung, Seungwoo Choi, Hyun‐Wook Lee, Yoon Seok Jung
{"title":"Revitalizing Sulfide Solid Electrolytes for All‐Solid‐State Batteries: Dry‐Air Exposure and Microwave‐Driven Regeneration","authors":"Boyeong Jang, Yong Bae Song, Ki Heon Baeck, Jongyoung Lee, Soon‐Jae Jung, Seungwoo Choi, Hyun‐Wook Lee, Yoon Seok Jung","doi":"10.1002/aenm.202502981","DOIUrl":"https://doi.org/10.1002/aenm.202502981","url":null,"abstract":"Processing sulfide solid electrolytes under dry‐air conditions at which certain levels of moisture are unavoidable poses challenges in the practical mass production of all‐solid‐state batteries (ASSBs). Herein, a facile microwave‐driven regeneration method is presented for Li<jats:sub>6</jats:sub>PS<jats:sub>5</jats:sub>Cl (LPSCl) degraded by dry‐air exposure, particularly after solvent treatment. While dry‐air exposure with a dew point of −40 °C for 6 h degrades the Li<jats:sup>+</jats:sup> conductivity of wet‐processed LPSCl from 3.33 to 2.55 mS cm<jats:sup>−1</jats:sup> at 30 °C, microwave irradiation at 800 W for only 10 min restores 98.3% of the Li<jats:sup>+</jats:sup> conductivity of pristine LPSCl (3.26 mS cm<jats:sup>−1</jats:sup>) and maintains its electron‐insulating property. By contrast, conventional furnace heat treatment recovers only 83.8% of Li<jats:sup>+</jats:sup> conductivity and causes severe carbonization. Comprehensive analyses reveal that microwave heating selectively eliminates hydration layers and carbonates without inducing structural alterations or byproduct evolution. Electrochemical tests demonstrate that the microwave‐regenerated LPSCl achieves performance nearly identical to the pristine LPSCl in LiNi<jats:sub>0.7</jats:sub>Co<jats:sub>0.15</jats:sub>Mn<jats:sub>0.15</jats:sub>O<jats:sub>2</jats:sub>||(Li‐In) cells. Its practical applicability is further validated in LiNi<jats:sub>0.7</jats:sub>Co<jats:sub>0.15</jats:sub>Mn<jats:sub>0.15</jats:sub>O<jats:sub>2</jats:sub>||(Ag−C) pouch‐type ASSBs. This rapid, scalable, and energy‐efficient regeneration method can ensure consistent sulfide solid electrolyte performance, regardless of storage or transport history, enabling reliable large‐scale manufacturing of ASSBs.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"135 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145035150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced Liquid Electrolyte Design for High-Voltage and High-Safety Lithium Metal Batteries (Adv. Energy Mater. 34/2025) 高压高安全性锂金属电池的先进液体电解质设计(能源材料,34/2025)
IF 26 1区 材料科学
Advanced Energy Materials Pub Date : 2025-09-10 DOI: 10.1002/aenm.70111
Junhua Zhou, Huimin Wang, Yongqiang Yang, Xinyan Li, Can Guo, Zhibo Li, Shujing Wen, Jiehua Cai, Zhaokun Wang, Yufei Zhang, Qiyao Huang, Zijian Zheng
{"title":"Advanced Liquid Electrolyte Design for High-Voltage and High-Safety Lithium Metal Batteries (Adv. Energy Mater. 34/2025)","authors":"Junhua Zhou,&nbsp;Huimin Wang,&nbsp;Yongqiang Yang,&nbsp;Xinyan Li,&nbsp;Can Guo,&nbsp;Zhibo Li,&nbsp;Shujing Wen,&nbsp;Jiehua Cai,&nbsp;Zhaokun Wang,&nbsp;Yufei Zhang,&nbsp;Qiyao Huang,&nbsp;Zijian Zheng","doi":"10.1002/aenm.70111","DOIUrl":"https://doi.org/10.1002/aenm.70111","url":null,"abstract":"<p><b>Lithium Metal Batteries</b></p><p>In article number 2502654, Zijian Zheng and co-workers review challenges in Li-metal battery electrolytes: dendrite growth, high-voltage instability, and flammability. Proposed solutions include high-concentration/weakly-solvating electrolytes, ionic liquids, and P/Cl-based molecules to advance practical Li-metal battery.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"15 34","pages":""},"PeriodicalIF":26.0,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aenm.70111","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145028441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How Machine Learning Has Driven the Development of Rechargeable Ion Batteries 机器学习如何推动可充电离子电池的发展
IF 27.8 1区 材料科学
Advanced Energy Materials Pub Date : 2025-09-09 DOI: 10.1002/aenm.202504095
Huawei Liu, Sihui Li, Shan Zhu, Yitao Hu, Xiaopeng Han, Chunsheng Shi, Fang He, Chunnian He, Biao Chen, Naiqin Zhao
{"title":"How Machine Learning Has Driven the Development of Rechargeable Ion Batteries","authors":"Huawei Liu, Sihui Li, Shan Zhu, Yitao Hu, Xiaopeng Han, Chunsheng Shi, Fang He, Chunnian He, Biao Chen, Naiqin Zhao","doi":"10.1002/aenm.202504095","DOIUrl":"https://doi.org/10.1002/aenm.202504095","url":null,"abstract":"","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"115 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145026168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vinyl Silane-Mediated Solvation Energetics Enable High-Voltage Lithium-Ion Batteries 乙烯基硅烷介导的溶剂化能量使高压锂离子电池成为可能
IF 27.8 1区 材料科学
Advanced Energy Materials Pub Date : 2025-09-09 DOI: 10.1002/aenm.202504022
Junying Yin, Xuequan Zhu, Yuqi Zhang, Yue Lei, Qian Zhao, Zhijie Gao, Yeguo Zou, Sen Jiang, Yu Qiao, Shi-Gang Sun
{"title":"Vinyl Silane-Mediated Solvation Energetics Enable High-Voltage Lithium-Ion Batteries","authors":"Junying Yin, Xuequan Zhu, Yuqi Zhang, Yue Lei, Qian Zhao, Zhijie Gao, Yeguo Zou, Sen Jiang, Yu Qiao, Shi-Gang Sun","doi":"10.1002/aenm.202504022","DOIUrl":"https://doi.org/10.1002/aenm.202504022","url":null,"abstract":"","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"48 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145026167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decoding Anode Stability: From Nucleation Kinetics to Pattern-Guided Flux Control for Long-Cycling Anode-Less Sodium Metal Batteries 解码阳极稳定性:从成核动力学到长循环无阳极钠金属电池的模式引导通量控制
IF 27.8 1区 材料科学
Advanced Energy Materials Pub Date : 2025-09-09 DOI: 10.1002/aenm.202503588
Srija Ghosh, Ashutosh Rana, Antra Mohini, Ponraj Jenis, S Renjitha, Md. Arif Faisal, Koushik Barman, James H. Ngyuen, Amreen Bano, Jeffrey E. Dick, Kingshuk Roy
{"title":"Decoding Anode Stability: From Nucleation Kinetics to Pattern-Guided Flux Control for Long-Cycling Anode-Less Sodium Metal Batteries","authors":"Srija Ghosh, Ashutosh Rana, Antra Mohini, Ponraj Jenis, S Renjitha, Md. Arif Faisal, Koushik Barman, James H. Ngyuen, Amreen Bano, Jeffrey E. Dick, Kingshuk Roy","doi":"10.1002/aenm.202503588","DOIUrl":"https://doi.org/10.1002/aenm.202503588","url":null,"abstract":"","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"36 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145026163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facile Exposure of P-Co/Co(OH)2 Heterointerfaces for Enhanced Activity and Stability in Alkaline Hydrogen Evolution Reaction P-Co/Co(OH)2异质界面暴露增强碱性析氢反应活性和稳定性
IF 27.8 1区 材料科学
Advanced Energy Materials Pub Date : 2025-09-09 DOI: 10.1002/aenm.202503695
Yuyang Liu, Huiping You, Chaoyuan Bai, Jiajie Yu, Enlai Hu, Dian Zhao, Jing Zhang, Zhongwei Chen
{"title":"Facile Exposure of P-Co/Co(OH)2 Heterointerfaces for Enhanced Activity and Stability in Alkaline Hydrogen Evolution Reaction","authors":"Yuyang Liu, Huiping You, Chaoyuan Bai, Jiajie Yu, Enlai Hu, Dian Zhao, Jing Zhang, Zhongwei Chen","doi":"10.1002/aenm.202503695","DOIUrl":"https://doi.org/10.1002/aenm.202503695","url":null,"abstract":"","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"63 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145026165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Situ X‐ray Absorption Fine Spectroscopy Reveals the Durability of Bismuth‐Coated Zn Metal Anode 原位X射线吸收精细光谱揭示铋涂层锌金属阳极的耐久性
IF 27.8 1区 材料科学
Advanced Energy Materials Pub Date : 2025-09-08 DOI: 10.1002/aenm.202503597
Zhuo Li, Mingyu Su, Xingbao Chen, Feiyang Chao, Ruihu Lu, Chengyi Zhang, Yiyang Mao, Dianxue Cao, Kai Zhu, Ziyun Wang
{"title":"In Situ X‐ray Absorption Fine Spectroscopy Reveals the Durability of Bismuth‐Coated Zn Metal Anode","authors":"Zhuo Li, Mingyu Su, Xingbao Chen, Feiyang Chao, Ruihu Lu, Chengyi Zhang, Yiyang Mao, Dianxue Cao, Kai Zhu, Ziyun Wang","doi":"10.1002/aenm.202503597","DOIUrl":"https://doi.org/10.1002/aenm.202503597","url":null,"abstract":"Aqueous zinc metal batteries (AZMBs) have attracted intensive focus owing to their inherent merits for large‐scale, low‐cost, and safe renewable energy storage. However, the water‐induced reactions on the anode, such as the hydrogen evolution reaction and corrosion, heavily hamper the zinc ion electroreduction. Herein, a heterogeneous interface (bismuth layer) is established on Zn introduced in an alcohol‐water system with specific adsorption to boost the zinc ions plating. Theoretical calculations indicate that specific adsorption on the bismuth layer facilitates nucleation while inhibiting parasitic reactions, particularly enhancing the formation of stable nuclei during the early stages. In situ X‐ray absorption fine structure (XAFS) analysis reveals the replacement of Zn─O by newly formed Zn‐Bi, and the durable anode mechanism is the establishment of a stable Bi─(Zn)─Bi triangular coordination that promotes high‐quality heterogeneous nucleation. This well‐regulated nucleation leads to rapid and homogeneous Zn deposition. Exceptional performance is observed on the modified anode with stability of more than 2,500 cycles under a current density of 100 mA cm<jats:sup>−2</jats:sup>. The modified anodes achieve a high coulombic efficiency of 99.72% at 5 mA cm<jats:sup>−2</jats:sup>. When used in a full cell, the bismuth‐modified anode realizes stable cycling for 10,000 cycles.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"15 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145017561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced Oxygen Electrocatalysis Driven by Asymmetric Interfacial Sulfur Bridge Bonding 不对称界面硫桥键驱动的高级氧电催化
IF 27.8 1区 材料科学
Advanced Energy Materials Pub Date : 2025-09-08 DOI: 10.1002/aenm.202503189
Liming Zhao, Yi Yang, Kuixing Ding, Pengyue Zhang, Jingji Zhang, Huanan Yu, Guoqiang Zou, Hongshuai Hou, Jiugang Hu, Xiaobo Ji
{"title":"Advanced Oxygen Electrocatalysis Driven by Asymmetric Interfacial Sulfur Bridge Bonding","authors":"Liming Zhao, Yi Yang, Kuixing Ding, Pengyue Zhang, Jingji Zhang, Huanan Yu, Guoqiang Zou, Hongshuai Hou, Jiugang Hu, Xiaobo Ji","doi":"10.1002/aenm.202503189","DOIUrl":"https://doi.org/10.1002/aenm.202503189","url":null,"abstract":"Rational modulation of interfacial electronic structure and active‐site cooperativity is essential for advancing bifunctional oxygen electrocatalysts in rechargeable aqueous zinc–air batteries (AZABs). Herein, a Co<jats:sub>9</jats:sub>S<jats:sub>8</jats:sub>/Fe<jats:sub>7</jats:sub>S<jats:sub>8</jats:sub> heterojunction encapsulated in porous N,S co‐doped carbon nanotubes (Co<jats:sub>9</jats:sub>S<jats:sub>8</jats:sub>/Fe<jats:sub>7</jats:sub>S<jats:sub>8</jats:sub>@NSCNTs) is constructed via a melamine‐assisted pyrolysis strategy to simultaneously enhance the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Asymmetric Co─S─Fe bonds at the heterointerface induce a bridge‐driven multi‐site synergy for promoting electron redistribution, surface polarity, and spatial activation of Co and Fe sites. By integrating sulfide heterointerfaces for ORR with the reconstructed (oxy)hydroxide surfaces for OER, this modulation lowers energy barriers of rate‐determining steps and enables reversible adsorption/desorption of oxygen intermediates, underscoring the critical role of asymmetric Co─S─Fe bridges in boosting bifunctional catalytic performance. Consequently, Co<jats:sub>9</jats:sub>S<jats:sub>8</jats:sub>/Fe<jats:sub>7</jats:sub>S<jats:sub>8</jats:sub>@NSCNTs exhibit remarkable catalytic efficiency and durability with an ORR half‐wave potential (<jats:italic>E</jats:italic><jats:sub>1/2</jats:sub>) of 0.84 V and an OER overpotential of 353 mV. Rechargeable AZABs incorporating Co<jats:sub>9</jats:sub>S<jats:sub>8</jats:sub>/Fe<jats:sub>7</jats:sub>S<jats:sub>8</jats:sub>@NSCNTs achieve high peak power density (118.4 mW cm<jats:sup>−2</jats:sup>), large specific capacity (880.3 mAh g<jats:sup>−1</jats:sup>), and exceptional cycling stability (over 650 cycles). This work highlights robust sulfur‐bridge interface engineering for multi‐site activation and provides valuable insights for designing high‐performance oxygen electrocatalysts in next‐generation energy conversion and storage systems.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"44 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145017563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Digital Twin of Solid Oxide Electrochemical Cells: From 3D Microstructure Reconstruction to Multiphysics Modeling 固体氧化物电化学电池的数字孪生:从三维微观结构重建到多物理场建模
IF 27.8 1区 材料科学
Advanced Energy Materials Pub Date : 2025-09-07 DOI: 10.1002/aenm.202503842
Seungsoo Jang, Yejin Kang, Kyung Taek Bae, Seong Hyun Park, Young Je Park, Dongyeon Kim, Hyeongmin Yu, Hyunjin Kim, Siwon Yu, Kang Taek Lee
{"title":"Digital Twin of Solid Oxide Electrochemical Cells: From 3D Microstructure Reconstruction to Multiphysics Modeling","authors":"Seungsoo Jang, Yejin Kang, Kyung Taek Bae, Seong Hyun Park, Young Je Park, Dongyeon Kim, Hyeongmin Yu, Hyunjin Kim, Siwon Yu, Kang Taek Lee","doi":"10.1002/aenm.202503842","DOIUrl":"https://doi.org/10.1002/aenm.202503842","url":null,"abstract":"Solid oxide electrochemical cells (SOCs) are promising electrochemical devices offering high‐efficiency energy conversion and storage. Their performance and durability, however, are critically governed by their underlying microstructure. Recent advancements in high‐resolution imaging and computational modeling have enabled the development of digital twin frameworks, which integrate detailed microstructural analysis with predictive multiphysics simulations‐ delivering insights beyond the reach of conventional experimental techniques. This review provides a comprehensive overview of digital twin approaches for SOCs at the micrometer‐scale, encompassing 3D microstructure reconstruction, quantitative descriptor extraction, and microstructure‐resolved multiphysics simulations. Progress is summarized in both tomography‐based and synthetic reconstruction techniques, the quantification of key microstructural parameters such as particle size, tortuosity, and triple‐phase boundary length, and the simulation of electrochemical, thermal, and mechanical behavior based on realistic architectures. These digital twin developments have enabled a wide range of applications, including process optimization, composition design, performance prediction, and degradation analysis. Finally, current key challenges and emerging opportunities are discussed, highlighting the potential of integrating artificial intelligence into digital twin workflows to realize real‐time feedback, adaptive modeling, and accelerated, microstructure‐informed SOC design.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"27 1","pages":""},"PeriodicalIF":27.8,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145009040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信