Lattice‐Confined Pt‐Ru Dual‐Atom Pair by Space Guard for Robust Hydrogen Evolution with Reversible Hydrogen Spillover

IF 26 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Changle Yue, Guangxun Sun, Na Liu, Wenjing Bao, Xiaowei Zhang, Fengyue Sun, Hsiao‐Chien Chen, Yuan Pan, Daofeng Sun, Yukun Lu
{"title":"Lattice‐Confined Pt‐Ru Dual‐Atom Pair by Space Guard for Robust Hydrogen Evolution with Reversible Hydrogen Spillover","authors":"Changle Yue, Guangxun Sun, Na Liu, Wenjing Bao, Xiaowei Zhang, Fengyue Sun, Hsiao‐Chien Chen, Yuan Pan, Daofeng Sun, Yukun Lu","doi":"10.1002/aenm.202502578","DOIUrl":null,"url":null,"abstract":"Tuning the chemical microenvironment of dual‐atom catalysts is a significant challenge in boosting electrocatalytic hydrogen evolution reaction (HER). Here, a “space guarding” strategy is proposed to precisely place Pt‐Ru dual‐atom pair sites confined in W<jats:sub>2</jats:sub>N lattice using polyoxometalates (POMs) K<jats:sub>10</jats:sub>[Zn<jats:sub>4</jats:sub>(H<jats:sub>2</jats:sub>O)<jats:sub>2</jats:sub>(PW<jats:sub>9</jats:sub>O<jats:sub>34</jats:sub>)<jats:sub>2</jats:sub>] as a rigid template. The pre‐reserved localized defects capture Pt‐Ru pair site and provide the specific W‐Pt‐N‐Ru coordination environment. The obtained PtRu@W<jats:sub>2</jats:sub>N<jats:sub>DF</jats:sub>@NC catalyst exhibits superior performance with an unprecedented mass activity of 72.7 A mg<jats:sub>(Pt+Ru)</jats:sub><jats:sup>−1</jats:sup> in 0.5 M H<jats:sub>2</jats:sub>SO<jats:sub>4</jats:sub> and stable electrochemical HER performance for 1200 h. With insights from in‐situ Raman spectroscopy and theoretical calculations, the overall hydrogen evolution pathway proceeds along three steps: fast H<jats:sub>2</jats:sub>O adsorption on W site, facile H* and OH* respective migration from W site to Pt and Ru sites via its distinct electronic flows, and favorable H<jats:sub>2</jats:sub> desorption on Pt site. This work demonstrates a dual‐atom placing strategy via precise lattice‐confinement for the construction of high‐performance HER electrocatalysts.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"13 1","pages":""},"PeriodicalIF":26.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202502578","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Tuning the chemical microenvironment of dual‐atom catalysts is a significant challenge in boosting electrocatalytic hydrogen evolution reaction (HER). Here, a “space guarding” strategy is proposed to precisely place Pt‐Ru dual‐atom pair sites confined in W2N lattice using polyoxometalates (POMs) K10[Zn4(H2O)2(PW9O34)2] as a rigid template. The pre‐reserved localized defects capture Pt‐Ru pair site and provide the specific W‐Pt‐N‐Ru coordination environment. The obtained PtRu@W2NDF@NC catalyst exhibits superior performance with an unprecedented mass activity of 72.7 A mg(Pt+Ru)−1 in 0.5 M H2SO4 and stable electrochemical HER performance for 1200 h. With insights from in‐situ Raman spectroscopy and theoretical calculations, the overall hydrogen evolution pathway proceeds along three steps: fast H2O adsorption on W site, facile H* and OH* respective migration from W site to Pt and Ru sites via its distinct electronic flows, and favorable H2 desorption on Pt site. This work demonstrates a dual‐atom placing strategy via precise lattice‐confinement for the construction of high‐performance HER electrocatalysts.
晶格约束Pt - Ru双原子对在可逆氢溢出条件下的鲁棒氢演化
调整双原子催化剂的化学微环境是促进电催化析氢反应(HER)的一个重大挑战。本文提出了一种“空间保护”策略,利用多金属氧酸盐(POMs) K10[Zn4(H2O)2(PW9O34)2]作为刚性模板,精确地放置限制在W2N晶格中的Pt - Ru双原子对位点。预先保留的局部缺陷捕获了Pt - Ru对位点,并提供了特定的W - Pt - N - Ru配位环境。所得PtRu@W2NDF@NC催化剂表现出优异的性能,在0.5 M H2SO4中具有前所未有的72.7 A mg(Pt+Ru)−1的质量活性,并且在1200小时内具有稳定的电化学HER性能。根据原位拉曼光谱和理论计算的见解,整个析氢途径分为三个步骤:W位点对H2O的吸附速度快,H*和OH*通过其独特的电子流从W位点分别迁移到Pt和Ru位点,Pt位点对H2的解吸效果好。这项工作展示了一种双原子放置策略,通过精确的晶格限制来构建高性能的HER电催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信