Full‐Dimensional Penetration Strategy with Degradable PEAI Enables 8.21% Efficiency in Bulk Heterojunction Sb2S3 Solar Cells

IF 26 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yang Wang, Dong Yang, Mengqi Jin, Zhiyang Wan, Wenbo Cao, Faisal Naveed, Jiajin Kuang, Chaofan Zheng, Chaoyang Wang, Junwei Chen, Yingying Dong, Mingtai Wang, Chong Chen
{"title":"Full‐Dimensional Penetration Strategy with Degradable PEAI Enables 8.21% Efficiency in Bulk Heterojunction Sb2S3 Solar Cells","authors":"Yang Wang, Dong Yang, Mengqi Jin, Zhiyang Wan, Wenbo Cao, Faisal Naveed, Jiajin Kuang, Chaofan Zheng, Chaoyang Wang, Junwei Chen, Yingying Dong, Mingtai Wang, Chong Chen","doi":"10.1002/aenm.202502805","DOIUrl":null,"url":null,"abstract":"Antimony trisulfide (Sb<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub>) is a promising low‐cost photovoltaic material, but practical Sb<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> solar cells suffer from multiple defects, anisotropic transport, and interfacial energy‐level mismatches, limiting power conversion efficiency (<jats:italic>η</jats:italic>) to 6%‐7%. Herein, a degradable full‐dimensional penetration passivation strategy using phenethylammonium iodide (PEAI) is proposed to synergistically address these issues. PEAI pretreatment of amorphous Sb<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> films enables [<jats:italic>hk</jats:italic>1]‐oriented crystallization, full‐dimensional defect passivation (bulk and interfaces), and dual‐interface energy‐level reconstruction via Cd‐I and Sb─I bonding. The PEAI reduces CdS surface energy and preferentially adsorbs on Sb<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> (211) planes, promoting [<jats:italic>hk</jats:italic>1] orientation and enhancing carrier transport. Moreover, the penetrated PEAI leads to a 3.7‐fold increase in carrier lifetime, verifying effective defect suppression. The resultant bulk heterojunction (BHJ) solar cells achieve a <jats:italic>η</jats:italic> of 8.21%, which is the highest efficiency of BHJ Sb<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> solar cells. This work establishes a quadruple‐integrated paradigm (defect passivation, orientation control, energy‐level optimization, and architecture design), providing a universal roadmap for high‐efficiency, sustainable photovoltaics.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"11 1","pages":""},"PeriodicalIF":26.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202502805","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Antimony trisulfide (Sb2S3) is a promising low‐cost photovoltaic material, but practical Sb2S3 solar cells suffer from multiple defects, anisotropic transport, and interfacial energy‐level mismatches, limiting power conversion efficiency (η) to 6%‐7%. Herein, a degradable full‐dimensional penetration passivation strategy using phenethylammonium iodide (PEAI) is proposed to synergistically address these issues. PEAI pretreatment of amorphous Sb2S3 films enables [hk1]‐oriented crystallization, full‐dimensional defect passivation (bulk and interfaces), and dual‐interface energy‐level reconstruction via Cd‐I and Sb─I bonding. The PEAI reduces CdS surface energy and preferentially adsorbs on Sb2S3 (211) planes, promoting [hk1] orientation and enhancing carrier transport. Moreover, the penetrated PEAI leads to a 3.7‐fold increase in carrier lifetime, verifying effective defect suppression. The resultant bulk heterojunction (BHJ) solar cells achieve a η of 8.21%, which is the highest efficiency of BHJ Sb2S3 solar cells. This work establishes a quadruple‐integrated paradigm (defect passivation, orientation control, energy‐level optimization, and architecture design), providing a universal roadmap for high‐efficiency, sustainable photovoltaics.
采用可降解PEAI的全尺寸穿透策略可使体异质结Sb2S3太阳能电池的效率提高8.21%
三硫化锑(Sb2S3)是一种很有前途的低成本光伏材料,但实际的Sb2S3太阳能电池存在多种缺陷、各向异性输运和界面能级不匹配,将功率转换效率(η)限制在6% ~ 7%。本文提出了一种可降解的全尺寸渗透钝化策略,使用苯乙基碘化铵(PEAI)来协同解决这些问题。非晶Sb2S3薄膜的PEAI预处理实现了[hk1]取向结晶,全维缺陷钝化(体和界面),以及通过Cd - I和Sb─I键合实现双界面能级重建。PEAI降低了CdS的表面能,并优先吸附在Sb2S3(211)平面上,促进了[hk1]取向,增强了载流子输运。此外,穿透PEAI导致载流子寿命增加3.7倍,验证了缺陷抑制的有效性。所得的体异质结(BHJ)太阳能电池的η值达到8.21%,是BHJ Sb2S3太阳能电池的最高效率。这项工作建立了一个四要素集成的范例(缺陷钝化、方向控制、能级优化和架构设计),为高效、可持续的光伏发电提供了一个通用的路线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信