{"title":"Pathogenesis of severe acute respiratory syndrome coronavirus-2 in nonhuman primates","authors":"Taylor Saturday, Neeltje van Doremalen","doi":"10.1016/j.coviro.2023.101375","DOIUrl":"10.1016/j.coviro.2023.101375","url":null,"abstract":"<div><p>The continued pressure of COVID-19 on public health worldwide underlines the need for a better understanding of the mechanisms of disease caused by severe acute respiratory syndrome coronavirus-2. Though many animal models are readily available for use, the nonhuman primate (NHP) models are considered the gold standard in recapitulating disease progression in humans. In this review, we highlight the relevant research since the beginning of the pandemic to critically evaluate the importance of this model. We characterize the disease’s clinical manifestations, aspects of viral replication and shedding, induction of the host’s immune response, and pathological findings that broaden our understanding of the importance of NHPs in research to strengthen our public health approach to the pandemic.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"63 ","pages":"Article 101375"},"PeriodicalIF":5.9,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41194380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial overview: The virome in health and disease (2022)","authors":"Jelle Matthijnssens, Evelien Adriaenssens","doi":"10.1016/j.coviro.2023.101376","DOIUrl":"10.1016/j.coviro.2023.101376","url":null,"abstract":"","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"63 ","pages":"Article 101376"},"PeriodicalIF":5.9,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41107541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transmission of severe acute respiratory syndrome coronavirus 2 from humans to animals: is there a risk of novel reservoirs?","authors":"Leira Fernández-Bastit , Júlia Vergara-Alert , Joaquim Segalés","doi":"10.1016/j.coviro.2023.101365","DOIUrl":"10.1016/j.coviro.2023.101365","url":null,"abstract":"<div><p>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a zoonotic virus able to infect humans and multiple nonhuman animal species. Most natural infections in companion, captive zoo, livestock, and wildlife species have been related to a reverse transmission, raising concern about potential generation of animal reservoirs due to human–animal interactions. To date, American mink and white-tailed deer are the only species that led to extensive intraspecies transmission of SARS-CoV-2 after reverse zoonosis, leading to an efficient spread of the virus and subsequent animal-to-human transmission. Viral host adaptations increase the probability of new SARS-CoV-2 variants’ emergence that could cause a major global health impact. Therefore, applying the One Health approach is crucial to prevent and overcome future threats for human, animal, and environmental fields.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"63 ","pages":"Article 101365"},"PeriodicalIF":5.9,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41129614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improvement of mucosal immunity by a live-attenuated SARS-CoV-2 nasal vaccine","authors":"Jason Yeung , Tian Wang , Pei-Yong Shi","doi":"10.1016/j.coviro.2023.101347","DOIUrl":"10.1016/j.coviro.2023.101347","url":null,"abstract":"<div><p>The effectiveness of early COVID-19 vaccines in reducing the severity of the disease has led to a focus on developing next-generation vaccines that can prevent infection and transmission of the virus. One promising approach involves the induction of mucosal immunity through nasal administration and a variety of mucosal vaccine candidates using different platforms are currently in development. Live-attenuated viruses, less pathogenic versions of SARS-CoV-2, have promising features as a mucosal vaccine platform and have the potential to induce hybrid immunity in individuals who have already received mRNA vaccines. This review discusses the potential benefits and considerations for the use of live-attenuated SARS-CoV-2 intranasal vaccines and highlights the authors' work in developing such a vaccine platform.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"62 ","pages":"Article 101347"},"PeriodicalIF":5.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10281987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Belén Carriquí-Madroñal , Lisa Lasswitz , Thomas von Hahn , Gisa Gerold
{"title":"Genetic and pharmacological perturbation of hepatitis-C virus entry","authors":"Belén Carriquí-Madroñal , Lisa Lasswitz , Thomas von Hahn , Gisa Gerold","doi":"10.1016/j.coviro.2023.101362","DOIUrl":"10.1016/j.coviro.2023.101362","url":null,"abstract":"<div><p>Hepatitis-C virus (HCV) chronically infects 58 million individuals worldwide with variable disease outcome. While a subfraction of individuals exposed to the virus clear the infection, the majority develop chronic infection if untreated. Another subfraction of chronically ill proceeds to severe liver disease. The underlying causes of this interindividual variability include genetic polymorphisms in interferon genes. Here, we review available data on the influence of genetic or pharmacological perturbation of HCV host dependency factors on the clinically observed interindividual differences in disease outcome. We focus on host factors mediating virus entry into human liver cells. We assess available data on genetic variants of the major entry factors scavenger receptor class-B type I, CD81, claudin-1, and occludin as well as pharmacological perturbation of these entry factors. We review cell culture experimental and clinical cohort study data and conclude that entry factor perturbation may contribute to disease outcome of hepatitis C.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"62 ","pages":"Article 101362"},"PeriodicalIF":5.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10282979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The more the merrier? Gene duplications in the coevolution of primate lentiviruses with their hosts","authors":"Martin Müller, Daniel Sauter","doi":"10.1016/j.coviro.2023.101350","DOIUrl":"10.1016/j.coviro.2023.101350","url":null,"abstract":"<div><p>Gene duplications are a major source of genetic diversity and evolutionary innovation. Newly formed, duplicated genes can provide a selection advantage in constantly changing environments. One such example is the arms race of HIV and related lentiviruses with innate immune responses of their hosts. In recent years, it has become clear that both sides have benefited from multiple gene duplications. For example, amplifications of antiretroviral factors such as apolipoprotein-B mRNA-editing enzyme catalytic polypeptide-3 (APOBEC3), interferon-induced transmembrane protein (IFITM), and tripartite motif-containing (TRIM) proteins have expanded the repertoire of cell-intrinsic defense mechanisms and increased the barriers to retroviral replication and cross-species transmission. Conversely, recent studies have also shed light on how duplications of accessory lentiviral genes and Long terminal repeat (LTR) elements can provide a selection advantage in the coevolution with antiviral host proteins.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"62 ","pages":"Article 101350"},"PeriodicalIF":5.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10282484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Antigenic evolution of SARS coronavirus 2","authors":"Anna Z Mykytyn, Ron AM Fouchier, Bart L Haagmans","doi":"10.1016/j.coviro.2023.101349","DOIUrl":"10.1016/j.coviro.2023.101349","url":null,"abstract":"<div><p>SARS coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, emerged in China in December 2019. Vaccines developed were very effective initially, however, the virus has shown remarkable evolution with multiple variants spreading globally over the last three years. Nowadays, newly emerging Omicron lineages are gaining substitutions at a fast rate, resulting in escape from neutralization by antibodies that target the Spike protein. Tools to map the impact of substitutions on the further antigenic evolution of SARS-CoV-2, such as antigenic cartography, may be helpful to update SARS-CoV-2 vaccines. In this review, we focus on the antigenic evolution of SARS-CoV-2, highlighting the impact of Spike protein substitutions individually and in combination on immune escape.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"62 ","pages":"Article 101349"},"PeriodicalIF":5.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10275788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The role of nuclear pores and importins for herpes simplex virus infection","authors":"Katinka Döhner , Manutea C Serrero , Beate Sodeik","doi":"10.1016/j.coviro.2023.101361","DOIUrl":"10.1016/j.coviro.2023.101361","url":null,"abstract":"<div><p>Microtubule transport and nuclear import are functionally connected, and the nuclear pore complex (NPC) can interact with microtubule motors. For several alphaherpesvirus proteins, nuclear localization signals (NLSs) and their interactions with specific importin-α proteins have been characterized. Here, we review recent insights on the roles of microtubule motors, capsid-associated NLSs, and importin-α proteins for capsid transport, capsid docking to NPCs, and genome release into the nucleoplasm, as well as the role of importins for nuclear viral transcription, replication, capsid assembly, genome packaging, and nuclear capsid egress. Moreover, importin-α proteins exert antiviral effects by promoting the nuclear import of transcription factors inducing the expression of interferons (IFN), cytokines, and IFN-stimulated genes, and the IFN-inducible MxB restricts capsid docking to NPCs.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"62 ","pages":"Article 101361"},"PeriodicalIF":5.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10336373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advantages and challenges of Newcastle disease virus as a vector for respiratory mucosal vaccines","authors":"Rik L de Swart , George A Belov","doi":"10.1016/j.coviro.2023.101348","DOIUrl":"10.1016/j.coviro.2023.101348","url":null,"abstract":"<div><p>Newcastle disease virus (NDV) is an avian pathogen with an unsegmented negative-strand RNA genome. Properties such as the ease of genome modification, respiratory tract tropism, and self-limiting replication in mammals make NDV an attractive vector for vaccine development. Experimental NDV-based vaccines against multiple human and animal pathogens elicited both systemic and mucosal immune responses and were protective in preclinical animal studies, but their real-life efficacy remains to be demonstrated. Only recently, the first results of clinical trials of NDV-based vaccines against SARS-CoV-2 became available, highlighting the challenges that need to be overcome to fully realize the potential of NDV as a platform for the rapid development of economically affordable and effective mucosal vaccines.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"62 ","pages":"Article 101348"},"PeriodicalIF":5.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10282381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}