Developmental biology最新文献

筛选
英文 中文
Drivers of vessel progenitor fate define intermediate mesoderm dimensions by inhibiting kidney progenitor specification 血管祖细胞命运的驱动因素通过抑制肾脏祖细胞的规范化来确定中间中胚层的尺寸
IF 2.5 3区 生物学
Developmental biology Pub Date : 2024-09-21 DOI: 10.1016/j.ydbio.2024.09.008
Elliot A. Perens , Deborah Yelon
{"title":"Drivers of vessel progenitor fate define intermediate mesoderm dimensions by inhibiting kidney progenitor specification","authors":"Elliot A. Perens ,&nbsp;Deborah Yelon","doi":"10.1016/j.ydbio.2024.09.008","DOIUrl":"10.1016/j.ydbio.2024.09.008","url":null,"abstract":"<div><div>Proper organ formation depends on the precise delineation of organ territories containing defined numbers of progenitor cells. Kidney progenitors reside in bilateral stripes of posterior mesoderm that are referred to as the intermediate mesoderm (IM). Previously, we showed that the transcription factors Hand2 and Osr1 act to strike a balance between the specification of the kidney progenitors in the IM and the vessel progenitors in the laterally adjacent territory. Recently, the transcription factor Npas4l – an early and essential driver of vessel and blood progenitor formation – was shown to inhibit kidney development. Here we demonstrate how kidney progenitor specification is coordinated by <em>hand2</em>, <em>osr1</em>, and <em>npas4l</em>. We find that <em>npas4l</em> and the IM marker <em>pax2a</em> are transiently co-expressed in the posterior lateral mesoderm, and <em>npas4l</em> is necessary to inhibit IM formation. Consistent with the expression of <em>npas4l</em> flanking the medial and lateral sides of the IM, our findings suggest roles for <em>npas4l</em> in defining the IM boundaries at each of these borders. At the lateral IM border, <em>hand2</em> promotes and <em>osr1</em> inhibits the formation of <em>npas4l</em>-expressing lateral vessel progenitors, and <em>hand2</em> requires <em>npas4l</em> to inhibit IM formation and to promote vessel formation. Meanwhile, <em>npas4l</em> appears to have an additional role in suppressing IM fate at the medial border: <em>npas4l</em> loss-of-function enhances <em>hand2</em> mutant IM defects and results in excess IM generated outside of the lateral <em>hand2</em>-expressing territory. Together, our findings reveal that establishment of the medial and lateral boundaries of the IM requires inhibition of kidney progenitor specification by the neighboring drivers of vessel progenitor fate.</div></div>","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":"517 ","pages":"Pages 126-139"},"PeriodicalIF":2.5,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142281773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Histological and gene-expression analyses of pyloric sphincter formation during stomach metamorphosis in Xenopus laevis 爪蟾胃变态过程中幽门括约肌形成的组织学和基因表达分析
IF 2.5 3区 生物学
Developmental biology Pub Date : 2024-09-21 DOI: 10.1016/j.ydbio.2024.09.010
Kei Nagura , Takafumi Ikeda , Takashi Hasebe , Yumeko Satou-Kobayashi , Sumio Udagawa , Shuji Shigenobu , Atsuko Ishizuya-Oka , Masanori Taira
{"title":"Histological and gene-expression analyses of pyloric sphincter formation during stomach metamorphosis in Xenopus laevis","authors":"Kei Nagura ,&nbsp;Takafumi Ikeda ,&nbsp;Takashi Hasebe ,&nbsp;Yumeko Satou-Kobayashi ,&nbsp;Sumio Udagawa ,&nbsp;Shuji Shigenobu ,&nbsp;Atsuko Ishizuya-Oka ,&nbsp;Masanori Taira","doi":"10.1016/j.ydbio.2024.09.010","DOIUrl":"10.1016/j.ydbio.2024.09.010","url":null,"abstract":"<div><div>During anuran metamorphosis from herbivorous tadpoles to carnivorous frogs, the gastrointestinal (GI) tract undergoes drastic remodeling, such as the formation of the stomach-intestine boundary and the development of the pyloric sphincter at the posterior end of the stomach. However, the morphogenetic process and molecular mechanisms of how the pyloric sphincter is formed during metamorphosis, instead of during embryogenesis as in amniotes, are largely uninvestigated. Using the African clawed frog <em>Xenopus laevis</em>, we histologically examined the development of the pylorus region from embryonic to froglet stages and performed spatiotemporal gene expression analyses. We found that the pyloric sphincter is formed at a flexure within the pyloric region during metamorphic climax, and that the pyloric and duodenal epithelia, which are morphologically indistinguishable before sphincter formation, become clearly demarcated by the sphincter at the end of metamorphosis. Consistent with these morphological changes, expression domains of a stomach marker <em>barx1</em> and an intestine marker <em>cdx2</em> overlapped until late metamorphic climax, but became separated after metamorphosis. Despite the absence of the sphincter before metamorphosis, various genes crucial for sphincter formation in amniotes were already expressed in the pylorus region of <em>Xenopus</em> embryos. RNA-sequencing analysis at pre-metamorphic and metamorphic-climax stages suggest unappreciated roles of genes, such as those for retinoic acid signaling and various transcription factors, in suppressing or promoting sphincter formation. These data provide histological and molecular insights into the heterochrony of the pyloric sphincter formation in amniotes and anurans.</div></div>","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":"517 ","pages":"Pages 100-116"},"PeriodicalIF":2.5,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142281774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-cell and bulk transcriptional profiling of mouse ovaries reveals novel genes and pathways associated with DNA damage response in oocytes 小鼠卵巢单细胞和大容量转录谱分析揭示了与卵母细胞 DNA 损伤反应相关的新型基因和通路。
IF 2.5 3区 生物学
Developmental biology Pub Date : 2024-09-19 DOI: 10.1016/j.ydbio.2024.09.007
Monique Mills , Chihiro Emori , Parveen Kumar , Zachary Boucher , Joshy George , Ewelina Bolcun-Filas
{"title":"Single-cell and bulk transcriptional profiling of mouse ovaries reveals novel genes and pathways associated with DNA damage response in oocytes","authors":"Monique Mills ,&nbsp;Chihiro Emori ,&nbsp;Parveen Kumar ,&nbsp;Zachary Boucher ,&nbsp;Joshy George ,&nbsp;Ewelina Bolcun-Filas","doi":"10.1016/j.ydbio.2024.09.007","DOIUrl":"10.1016/j.ydbio.2024.09.007","url":null,"abstract":"<div><div>Immature oocytes enclosed in primordial follicles stored in female ovaries are under constant threat of DNA damage induced by endogenous and exogenous factors. Checkpoint kinase 2 (CHEK2) is a key mediator of the DNA damage response (DDR) in all cells. Genetic studies have shown that CHEK2 and its downstream targets, p53, and TAp63, regulate primordial follicle elimination in response to DNA damage. However, the mechanism leading to their demise is still poorly characterized. Single-cell and bulk RNA sequencing were used to determine the DDR in wild-type and <em>Chek2</em>-deficient ovaries. A low but oocyte-lethal dose of ionizing radiation induces ovarian DDR that is solely dependent on CHEK2. DNA damage activates multiple response pathways related to apoptosis, p53, interferon signaling, inflammation, cell adhesion, and intercellular communication. These pathways are differentially employed by different ovarian cell types, with oocytes disproportionately affected by radiation. Novel genes and pathways are induced by radiation specifically in oocytes, shedding light on their sensitivity to DNA damage, and implicating a coordinated response between oocytes and pregranulosa cells within the follicle. These findings provide a foundation for future studies on the specific mechanisms regulating oocyte survival in the context of aging, therapeutic and environmental genotoxic exposures.</div></div>","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":"517 ","pages":"Pages 55-72"},"PeriodicalIF":2.5,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142281785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plk4 regulates centriole duplication in the embryonic development of zebrafish Plk4调控斑马鱼胚胎发育过程中的中心粒复制
IF 2.5 3区 生物学
Developmental biology Pub Date : 2024-09-18 DOI: 10.1016/j.ydbio.2024.09.006
Zhiyu Mu , Pengfei Zheng , Shuangyu Liu , Yunsi Kang , Haibo Xie
{"title":"Plk4 regulates centriole duplication in the embryonic development of zebrafish","authors":"Zhiyu Mu ,&nbsp;Pengfei Zheng ,&nbsp;Shuangyu Liu ,&nbsp;Yunsi Kang ,&nbsp;Haibo Xie","doi":"10.1016/j.ydbio.2024.09.006","DOIUrl":"10.1016/j.ydbio.2024.09.006","url":null,"abstract":"<div><div>PLK4 plays a crucial role in centriole duplication, which is essential for maintaining cellular processes such as cell division, cytoskeletal stability, and cilia formation. However, the mechanisms of PLK4 remain incompletely understood, especially in the embryonic development of vertebrate species. In this study, we observed that Plk4 dysfunction led to abnormal embryonic development in zebrafish, characterized by symptoms such as dark and wrinkled skin, microphthalmia, and body axis curvature. In <em>plk4</em> mutants, defects in centriole duplication led to abnormal cell division, apoptosis, and ciliogenesis defects. Moreover, overexpression of <em>plk4</em> in zebrafish embryos caused excessive centrosome amplification, disrupting embryonic gastrulation through abnormal cell division and ultimately resulting in embryonic lethality. Furthermore, we identified the \"cryptic\" polo box (CPB) domain, consisting of two PBs (PB1 and PB2), as the critical centrosome localization domain of Plk4. Surprisingly, overexpression of these two PB domains alone was sufficient to induce embryonic lethality. Additionally, we discovered a truncated form of CPB that localizes to the centrosome without causing defects in embryonic development. Our results demonstrate that Plk4 tightly controls centriole duplication, which is essential for early embryonic development in zebrafish.</div></div>","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":"517 ","pages":"Pages 148-156"},"PeriodicalIF":2.5,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142281784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
JNK Kinase regulates cachexia like syndrome in scribble knockdown tumor model of Drosophila melanogaster JNK 激酶调控黑腹果蝇 Scribble 基因敲除肿瘤模型中的恶病质综合征
IF 2.5 3区 生物学
Developmental biology Pub Date : 2024-09-16 DOI: 10.1016/j.ydbio.2024.09.005
Rohit Kumar, S. Srikrishna
{"title":"JNK Kinase regulates cachexia like syndrome in scribble knockdown tumor model of Drosophila melanogaster","authors":"Rohit Kumar,&nbsp;S. Srikrishna","doi":"10.1016/j.ydbio.2024.09.005","DOIUrl":"10.1016/j.ydbio.2024.09.005","url":null,"abstract":"<div><p>Cachexia and systemic organ wasting are metabolic syndrome often associated with cancer. However, the exact mechanism of cancer associated cachexia like syndrome still remain elusive. In this study, we utilized a <em>scribble</em> (<em>scrib</em>) knockdown induced hindgut tumor to investigate the role of JNK kinase in cachexia like syndrome. <em>Scrib</em>, a cell polarity regulator, also acts as a tumor suppressor gene. Its loss and mis-localization are reported in various type of malignant cancer-like breast, colon and prostate cancer. The <em>scrib</em> knockdown flies exhibited male lethality, reduced life span, systemic organ wasting and increased pJNK level in hindgut of female flies. Interestingly, knocking down of human JNK Kinase analogue, <em>hep</em>, in <em>scrib</em> knockdown background in hindgut leads to restoration of loss of <em>scrib</em> mediated lethality and systemic organ wasting. Our data showed that <em>scrib</em> loss in hindgut is capable of inducing cancer associated cachexia like syndrome. Here, we firstly report that blocking the JNK signaling pathway effectively rescued the cancer cachexia induced by <em>scrib</em> knockdown, along with its associated gut barrier disruption. These findings have significantly advanced our understanding of cancer cachexia and have potential implications for the development of therapeutic strategies. However, more research is needed to fully understand the complex mechanisms underlying this condition.</p></div>","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":"517 ","pages":"Pages 28-38"},"PeriodicalIF":2.5,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Outside Back Cover - Graphical abstract TOC/TOC in double column/Cover image legend if applicable, Bar code, Abstracting and Indexing information 封底外页 - 双栏图文摘要 TOC/TOC/封面图像图例(如适用)、条形码、摘要和索引信息
IF 2.5 3区 生物学
Developmental biology Pub Date : 2024-09-14 DOI: 10.1016/S0012-1606(24)00226-4
{"title":"Outside Back Cover - Graphical abstract TOC/TOC in double column/Cover image legend if applicable, Bar code, Abstracting and Indexing information","authors":"","doi":"10.1016/S0012-1606(24)00226-4","DOIUrl":"10.1016/S0012-1606(24)00226-4","url":null,"abstract":"","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":"516 ","pages":"Page OBC"},"PeriodicalIF":2.5,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142229803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perturbed cell cycle phase-dependent positioning and nuclear migration of retinal progenitors along the apico-basal axis underlie global retinal disorganization in the LCA8-like mouse model 在 LCA8-like 小鼠模型中,视网膜祖细胞沿 apico-basal 轴的细胞周期相位依赖性定位和核迁移紊乱是全局性视网膜紊乱的基础。
IF 2.5 3区 生物学
Developmental biology Pub Date : 2024-09-14 DOI: 10.1016/j.ydbio.2024.09.003
Seo-Hee Cho , Ji Hyang Kim , Seonhee Kim
{"title":"Perturbed cell cycle phase-dependent positioning and nuclear migration of retinal progenitors along the apico-basal axis underlie global retinal disorganization in the LCA8-like mouse model","authors":"Seo-Hee Cho ,&nbsp;Ji Hyang Kim ,&nbsp;Seonhee Kim","doi":"10.1016/j.ydbio.2024.09.003","DOIUrl":"10.1016/j.ydbio.2024.09.003","url":null,"abstract":"<div><div>Combined removal of Crb1 and Crb2 from the developing optic vesicle evokes cellular and laminar disorganization by disrupting the apical cell-cell adhesion in developing retinal epithelium. As a result, at postnatal stages, affected mouse retinas show temporarily thickened, coarsely laminated retinas in addition to functional deficits, including a severely abnormal electroretinogram and decreased visual acuity. These features are reminiscent of Leber congenital amaurosis 8, which is caused in humans by subsets of Crb1 mutations. However, the cellular basis of the abnormalities in retinal progenitor cells (RPCs) that lead to retinal disorganization is largely unknown. In this study, we analyze specific features of RPCs in mutant retinas, including maintenance of the progenitor pool, cell cycle progression, cell cycle phase-dependent nuclear positioning, cell survival, and generation of mature retinal cell types. We find crucial defects in the mutant RPCs. Upon removal of CRB1 and CRB2, apical structures of the RPCs, determined by markers of cilia and centrosomes, are basally shifted. In addition, the positioning of the somata of the M-phase cells, normally localized at the apical surface of the retinal epithelium, is basally shifted in a nearly randomized pattern along the apico-basal axis. Consequently, we propose that positioning of RPCs is desynchronized from cell cycle phase and largely randomized during embryonic development at E17.5. Because the resultant postmitotic cells inevitably lose positional information, the outer and inner nuclear layers (ONL and INL) fail to form from ONBL during neonatal development and retinal cells become mixed locally and globally. Additional results of the lost tissue polarity in Crb1/Crb2 dKO retinas include atypical formation of heterotopic cell patches containing photoreceptor cells in the ganglion cell layer and acellular patches filled with neural processes. Collectively, these changes lead to a mouse model of LCA8-like pathology. LCA8-like pathology differs substantially from the well-characterized, broad range of degeneration phenotypes that arise during the differentiation of photoreceptor and Muller glial cells in retinitis pigmentosa 12, a closely related disease caused by mutated human Crb1.</div><div>Importantly, the present results suggest that Crb1/Crb2 serve indispensable functions in maintaining cell-cycle phase-dependent positioning of RPCs along the apico-basal axis, regulating cell cycle progression, and maintaining structural laminar integrity without significantly affecting the size of the RPC pools, generation of the subsets of the retinal cell types, or the distribution of cell cycle phases during RPC division. Taken together, these findings provide the crucial cellular basis of the thickening and severely disorganized lamination that are the unique features of the retinal abnormalities in LCA8 patients.</div></div>","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":"517 ","pages":"Pages 39-54"},"PeriodicalIF":2.5,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142281783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Taking flight! 起飞
IF 2.5 3区 生物学
Developmental biology Pub Date : 2024-09-13 DOI: 10.1016/j.ydbio.2024.09.004
Armin P. Moczek
{"title":"Taking flight!","authors":"Armin P. Moczek","doi":"10.1016/j.ydbio.2024.09.004","DOIUrl":"10.1016/j.ydbio.2024.09.004","url":null,"abstract":"<div><p>Understanding the origins of novel complex traits, the evolutionary transitions they enabled, and how those shaped the subsequent course of evolution, are all foundational objectives of evolutionary biology. Yet how developmental systems may transform to yield the first eye, limb, or placenta remains poorly understood. Seminal work by Courtney Clark-Hachtel, David Linz, and Yoshinori Tomoyasu published in the <em>Proceedings of the National Academy of Sciences</em> in 2013 used the origins of insect wings - one of the most impactful innovations of animal life on Earth - to provide both a case study and a new way of thinking of how novel complex traits may come into being. This paradigm-setting study not only transformed the way we view insect wings, their origins, and their affinities to other morphological structures; even more importantly, it created entryways to envision innovation as emerging gradually, not somehow divorced from ancestral homology, but <em>through it</em> via the differential modification, fusion, and elaboration of ancestral component parts. In a conceptual universe of <em>descent with modification</em>, where everything new must ultimately emerge from the old, this work thereby established a powerful bridge connecting ancestral homology and novelty through a gradual process of innovation, sparking much creative and groundbreaking work to follow since its publication just a little over a decade ago.</p></div>","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":"517 ","pages":"Pages 24-27"},"PeriodicalIF":2.5,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142242395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative analysis of fixation techniques for signal detection in avian embryos 用于禽类胚胎信号检测的固定技术比较分析
IF 2.5 3区 生物学
Developmental biology Pub Date : 2024-09-06 DOI: 10.1016/j.ydbio.2024.09.002
Camilo V. Echeverria Jr. , Tess A. Leathers , Crystal D. Rogers
{"title":"Comparative analysis of fixation techniques for signal detection in avian embryos","authors":"Camilo V. Echeverria Jr. ,&nbsp;Tess A. Leathers ,&nbsp;Crystal D. Rogers","doi":"10.1016/j.ydbio.2024.09.002","DOIUrl":"10.1016/j.ydbio.2024.09.002","url":null,"abstract":"<div><p>The choice of fixation method significantly impacts tissue morphology and visualization of gene expression and proteins after <em>in situ</em> hybridization chain reaction (HCR) or immunohistochemistry (IHC), respectively. In this study, we compared the effects of paraformaldehyde (PFA) and trichloroacetic acid (TCA) fixation techniques prior to HCR and IHC on chicken embryos. Our findings underscore the importance of optimizing fixation methods for accurate visualization and subsequent interpretation of HCR and IHC results, with implications for probe and antibody validation and tissue-specific protein localization studies. We found that TCA fixation resulted in larger and more circular nuclei and neural tubes compared to PFA fixation. Additionally, TCA fixation altered the subcellular fluorescence signal intensity of various proteins, including transcription factors, cytoskeletal proteins, and cadherins. Notably, TCA fixation revealed protein signals in tissues that may be inaccessible with PFA fixation. In contrast, TCA fixation proved ineffective for mRNA visualization. These results highlight the need for optimization of fixation protocols depending on the target and model system, emphasizing the importance of methodological considerations in biological analyses.</p></div>","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":"517 ","pages":"Pages 13-23"},"PeriodicalIF":2.5,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012160624002276/pdfft?md5=a5f642eeed16694517cf22ae7be25c9c&pid=1-s2.0-S0012160624002276-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The localization and function of the moonlighting protein Clathrin during oocyte maturation 卵母细胞成熟过程中月光蛋白 Clathrin 的定位和功能。
IF 2.5 3区 生物学
Developmental biology Pub Date : 2024-09-05 DOI: 10.1016/j.ydbio.2024.09.001
B. Camia , M. Longo , A. Bergonzi , I. Dezza , M. Biggiogera , C.A. Redi , A. Casasco , M. Monti
{"title":"The localization and function of the moonlighting protein Clathrin during oocyte maturation","authors":"B. Camia ,&nbsp;M. Longo ,&nbsp;A. Bergonzi ,&nbsp;I. Dezza ,&nbsp;M. Biggiogera ,&nbsp;C.A. Redi ,&nbsp;A. Casasco ,&nbsp;M. Monti","doi":"10.1016/j.ydbio.2024.09.001","DOIUrl":"10.1016/j.ydbio.2024.09.001","url":null,"abstract":"<div><p>Clathrin is one of the leading players in the endocytic process during oocyte maturation. Immunofluorescence and transmission electron analysis on fully-grown germinal vesicle (GV) mouse oocytes shows Clathrin localization on the cortical region with three peculiar patterns: complete, incomplete, and half-moon. The first configuration is characterized by Clathrin lattices along the cortex; the second is represented by Clathrin lattices interrupted by invaginations forming coated vesicles as an indication of active endocytosis. The half-moon profile, the less frequent but the most interesting one, refers to Clathrin lattices distributed to one-half of the cell.</p><p>The <em>in vivo</em> analysis of organelles' positioning and cytoplasmic rearrangements, performed to understand the possible relation between endocytosis and oocyte maturation, suggests that the half-moon pattern indicates those fully-grown oocytes that may have likely undergone Germinal Vesicle Breakdown, MI, and MII. Our results show that, before oocytes undergo maturation, Clathrin localizes on the side of the cell, opposite to future spindle migration, thus marking spindle orientation in mouse oocytes.</p></div>","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":"517 ","pages":"Pages 1-12"},"PeriodicalIF":2.5,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142145372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信