A critical genetic interaction between Gemin3/Ddx20 and translation initiation factor NAT1/eIF4G2 drives development

IF 2.5 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY
Rebecca Cacciottolo , Ruben J. Cauchi
{"title":"A critical genetic interaction between Gemin3/Ddx20 and translation initiation factor NAT1/eIF4G2 drives development","authors":"Rebecca Cacciottolo ,&nbsp;Ruben J. Cauchi","doi":"10.1016/j.ydbio.2025.02.003","DOIUrl":null,"url":null,"abstract":"<div><div>Gemin3 (Gem3) or DEAD-box RNA helicase 20 (Ddx20) has been mostly implicated in the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs) as part of the SMN-Gemins complex. Nonetheless, several studies have hinted at its participation in diverse snRNP-independent activities. Here, we utilised a narrow unbiased genetic screen to discover novel Gem3 interactors in <em>Drosophila</em> with the aim of gaining better insights on its function <em>in vivo</em>. Through this approach, we identified a novel genetic interaction between <em>Gem3</em> and <em>NAT1</em>, which encodes the <em>Drosophila</em> orthologue of translational regulator eIF4G2. Despite lack of a physical association, loss of <em>NAT1</em> function was found to downregulate <em>Gem3</em> mRNA levels. Extensive convergence in transcriptome alterations downstream of <em>Gem3</em> and <em>NAT1</em> silencing further supports a functional relationship between these factors in addition to showing a requirement for both in actin cytoskeleton organisation and organism development, particularly neurodevelopment. In confirmation, flies with either <em>Gem3</em> or <em>NAT1</em> depletion exhibited brain growth defects and reduced muscle contraction. Severe delays in developmental progression were also observed in a newly generated Gem3 hypomorphic mutant. Our data linking Gemin3 to a key component of the translational machinery support an emerging role for Gemin3 in translation that is also critical during organism development.</div></div>","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":"521 ","pages":"Pages 37-51"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012160625000338","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gemin3 (Gem3) or DEAD-box RNA helicase 20 (Ddx20) has been mostly implicated in the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs) as part of the SMN-Gemins complex. Nonetheless, several studies have hinted at its participation in diverse snRNP-independent activities. Here, we utilised a narrow unbiased genetic screen to discover novel Gem3 interactors in Drosophila with the aim of gaining better insights on its function in vivo. Through this approach, we identified a novel genetic interaction between Gem3 and NAT1, which encodes the Drosophila orthologue of translational regulator eIF4G2. Despite lack of a physical association, loss of NAT1 function was found to downregulate Gem3 mRNA levels. Extensive convergence in transcriptome alterations downstream of Gem3 and NAT1 silencing further supports a functional relationship between these factors in addition to showing a requirement for both in actin cytoskeleton organisation and organism development, particularly neurodevelopment. In confirmation, flies with either Gem3 or NAT1 depletion exhibited brain growth defects and reduced muscle contraction. Severe delays in developmental progression were also observed in a newly generated Gem3 hypomorphic mutant. Our data linking Gemin3 to a key component of the translational machinery support an emerging role for Gemin3 in translation that is also critical during organism development.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Developmental biology
Developmental biology 生物-发育生物学
CiteScore
5.30
自引率
3.70%
发文量
182
审稿时长
1.5 months
期刊介绍: Developmental Biology (DB) publishes original research on mechanisms of development, differentiation, and growth in animals and plants at the molecular, cellular, genetic and evolutionary levels. Areas of particular emphasis include transcriptional control mechanisms, embryonic patterning, cell-cell interactions, growth factors and signal transduction, and regulatory hierarchies in developing plants and animals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信