Current Applied Physics最新文献

筛选
英文 中文
Strain-dependent Rashba effect, and spin Hall conductivity in the altermagnetic Janus V2SeTeO monolayer 随应变变化的拉什巴效应,以及变磁性 Janus V2SeTeO 单层中的自旋霍尔电导率
IF 2.4 4区 物理与天体物理
Current Applied Physics Pub Date : 2024-10-30 DOI: 10.1016/j.cap.2024.10.014
Brahim Marfoua , Jisang Hong
{"title":"Strain-dependent Rashba effect, and spin Hall conductivity in the altermagnetic Janus V2SeTeO monolayer","authors":"Brahim Marfoua ,&nbsp;Jisang Hong","doi":"10.1016/j.cap.2024.10.014","DOIUrl":"10.1016/j.cap.2024.10.014","url":null,"abstract":"<div><div>Altermagnets represent a distinctive class of antiferromagnetic materials characterized by non-overlapping spin bands and attract extensive research efforts. Herein, we investigate the interplay among electronic, magnetic, and spin transport phenomena of the Janus V<sub>2</sub>SeTeO monolayer. The Janus monolayer has a direct band gap of 0.32 eV. The Janus V<sub>2</sub>SeTeO layer has an in-plane magnetic anisotropy along (110) direction. The incorporation of spin-orbit coupling (SOC) induces a Rashba-type band structure with a Rashba coefficient of 1.02 eV Å. The Rashba coefficient is insensitive to the compressive strain. In contrast, it is suppressed with tensile strain and becomes almost zero at 3 % tensile strain. The maximum SHC of around ∼ −65 (ℏ/e)S/cm is achieved with hole doping. The magnitudes of SHC remain comparable to those in typical topological materials. Overall, this investigation provides fundamental insights into the magnetic, Rashba, and spin transport properties of the Janus V<sub>2</sub>SeTeO altermagnet monolayer.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"69 ","pages":"Pages 47-54"},"PeriodicalIF":2.4,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and fabrication of ultrathin silicon-based strain gauges for piezoresistive pressure sensor 设计和制造用于压阻压力传感器的超薄硅基应变片
IF 2.4 4区 物理与天体物理
Current Applied Physics Pub Date : 2024-10-30 DOI: 10.1016/j.cap.2024.10.015
Jun-Hwan Choi, Jung-Sik Kim
{"title":"Design and fabrication of ultrathin silicon-based strain gauges for piezoresistive pressure sensor","authors":"Jun-Hwan Choi,&nbsp;Jung-Sik Kim","doi":"10.1016/j.cap.2024.10.015","DOIUrl":"10.1016/j.cap.2024.10.015","url":null,"abstract":"<div><div>Ultra-thin (20 μm) silicon strain gauges were fabricated with silicon-on-insulator (SOI) wafer <strong>by a newly-conceived wet etching process. Buffered oxide etchant (BOE, NH</strong><sub><strong>4</strong></sub><strong>F: HF = 6:1) solution with additives of octylamine and octanol was used for wet etching process in which the operating temperature was 50°C.</strong> Photoresist as a passivation layer was deposited on the upper side of SOI wafer to minimize strain gauge damage by chemical etchants. Small amount of octylamine and octanol were added to BOE solution to improve surface wettability and SiO<sub>2</sub>/Si selectivity. The fabricated strain gauges were attached to the pressure diaphragm and the performance of strain gauge was investigated by measuring with the hydraulic pressure system. The resistance changed linearly with tensile and compressive strains. <strong>Maximum values of non-linearity, hysteresis, thermal coefficient of resistance (TCR) and sensitivity were -0.341 %, 0.909 %, 4128 ppm/°C and 34.22 mV/V respectively. The fabricated strain gauges might be well applicable to the hydrogen pressure sensor which is detectable for high pressure range (0–900 bar).</strong></div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"69 ","pages":"Pages 28-35"},"PeriodicalIF":2.4,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced spectroscopic methods for probing in-gap defect states in amorphous SiNx for charge trap memory applications 探测电荷阱存储器应用中非晶氮化硅隙内缺陷态的先进光谱方法
IF 2.4 4区 物理与天体物理
Current Applied Physics Pub Date : 2024-10-24 DOI: 10.1016/j.cap.2024.10.007
Hyun Don Kim , Minseon Gu , Kyu-Myung Lee , Hanyeol Ahn , Jinwoo Byun , Gukhyon Yon , Junghyun Beak , Hyeongjoon Lim , Jaemo Jung , Jaehyeon Park , Jwa Soon Kim , HaeJoon Hahm , Soobang Kim , Won Ja Min , Moon Seop Hyun , Yun Chang Park , Gyungtae Kim , Yongsup Park , Moonsup Han , Eunjip Choi , Young Jun Chang
{"title":"Advanced spectroscopic methods for probing in-gap defect states in amorphous SiNx for charge trap memory applications","authors":"Hyun Don Kim ,&nbsp;Minseon Gu ,&nbsp;Kyu-Myung Lee ,&nbsp;Hanyeol Ahn ,&nbsp;Jinwoo Byun ,&nbsp;Gukhyon Yon ,&nbsp;Junghyun Beak ,&nbsp;Hyeongjoon Lim ,&nbsp;Jaemo Jung ,&nbsp;Jaehyeon Park ,&nbsp;Jwa Soon Kim ,&nbsp;HaeJoon Hahm ,&nbsp;Soobang Kim ,&nbsp;Won Ja Min ,&nbsp;Moon Seop Hyun ,&nbsp;Yun Chang Park ,&nbsp;Gyungtae Kim ,&nbsp;Yongsup Park ,&nbsp;Moonsup Han ,&nbsp;Eunjip Choi ,&nbsp;Young Jun Chang","doi":"10.1016/j.cap.2024.10.007","DOIUrl":"10.1016/j.cap.2024.10.007","url":null,"abstract":"<div><div>Silicon nitride (SiN<sub>x</sub>) serves as the charge trap layer in current 3D NAND flash memory devices. The precise formation mechanism and electronic structure of localized defect trap states in SiN<sub>x</sub> remain elusive. Here, we present a refined experimental methodology to elucidate the in-gap defect states and the band gaps in amorphous SiN<sub>x</sub> thin films. Our approach integrates high-resolution reflection electron energy loss spectroscopy (REELS) and spectroscopic ellipsometry (SE) for comprehensive analysis. By systematical analysis, we aim to provide a robust method for determining in-gap electronic states in SiN<sub>x</sub>. We investigated two different SiN<sub>x</sub> films prepared by plasma-enhanced chemical vapor deposition and sputtering. Our analysis revealed several distinct in-gap states and determined band gap energies. This approach not only provide advanced spectroscopic methods to characterize the defect electronic states in SiN<sub>x</sub>, but also applicable to other large band gap semiconductors or dielectrics to predict device-level characteristics for future devices.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"69 ","pages":"Pages 21-27"},"PeriodicalIF":2.4,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing photocatalytic performance of SnO2/ZnS nanocomposites synthesized via dual-step precipitation and ultrasonicated hydrothermal route 提高通过双步沉淀和超声水热法合成的 SnO2/ZnS 纳米复合材料的光催化性能
IF 2.4 4区 物理与天体物理
Current Applied Physics Pub Date : 2024-10-18 DOI: 10.1016/j.cap.2024.10.011
Y.C. Goswami , R. Bisauriya , A.A. Hlaing , T.T. Moe , Jyoti Bala Kaundal , D. Aryanto , R. Yudianti
{"title":"Enhancing photocatalytic performance of SnO2/ZnS nanocomposites synthesized via dual-step precipitation and ultrasonicated hydrothermal route","authors":"Y.C. Goswami ,&nbsp;R. Bisauriya ,&nbsp;A.A. Hlaing ,&nbsp;T.T. Moe ,&nbsp;Jyoti Bala Kaundal ,&nbsp;D. Aryanto ,&nbsp;R. Yudianti","doi":"10.1016/j.cap.2024.10.011","DOIUrl":"10.1016/j.cap.2024.10.011","url":null,"abstract":"<div><div>SnO<sub>2</sub>/ZnS nanocomposites were successfully synthesized using a modified hydrothermal route. The synthesis involved separate co-precipitation of SnO<sub>2</sub> and ZnS, followed by ultrasonic stirring and hydrothermal treatment. The resulting nanocomposites exhibited controlled size and composition. By adjusting synthesis parameters such as the molar ratio of Sn to Zn, reaction temperature, and reaction time, the morphology and properties of the nanocomposites could be finely tuned. The synthesized SnO<sub>2</sub>/ZnS nanocomposites demonstrated remarkable improvements in photocatalytic performance compared to pure SnO<sub>2</sub> or ZnS nanoparticles. This enhancement was attributed to the nanocomposites' enhanced charge separation, increased surface area, and improved light absorption capabilities. As a result, the SnO<sub>2</sub>/ZnS nanocomposites hold great promise for a wide range of applications, including environmental remediation, water splitting, and solar energy conversion.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"68 ","pages":"Pages 275-283"},"PeriodicalIF":2.4,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical and electrochemical characterization of CuAlNi alloys 铜铝镍合金的机械和电化学特性分析
IF 2.4 4区 物理与天体物理
Current Applied Physics Pub Date : 2024-10-18 DOI: 10.1016/j.cap.2024.10.008
Jia-Yuan Chen , Hoang-Giang Nguyen , Ming-Hong Lin , Te-Hua Fang
{"title":"Mechanical and electrochemical characterization of CuAlNi alloys","authors":"Jia-Yuan Chen ,&nbsp;Hoang-Giang Nguyen ,&nbsp;Ming-Hong Lin ,&nbsp;Te-Hua Fang","doi":"10.1016/j.cap.2024.10.008","DOIUrl":"10.1016/j.cap.2024.10.008","url":null,"abstract":"<div><div>The effect of copper composition on the structure and mechanical properties of CuAlNi alloys was investigated using MD simulation and characterization methods. It was found that the structure of CuAlNi alloys markedly resembles Cu composition, which alterations from the initial single (FCC) to (BCC) structure and then to a duplex BCC structure as the Cu content is raised. Nanoindentation measurements show that the hardness of CuAlNi alloys increases with Cu content. When there are more Al elements, the surface of the material is first combined with ions in seawater so that the corrosion potential is significantly reduced. This research seeks to identify CuAlNi alloys with improved properties through molecular dynamics simulations and experimental analyses, highlighting the connections between microstructure and mechanical behavior.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"69 ","pages":"Pages 8-20"},"PeriodicalIF":2.4,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning-enhanced design of lead-free halide perovskite materials using density functional theory 利用密度泛函理论进行无铅卤化物包晶材料的机器学习强化设计
IF 2.4 4区 物理与天体物理
Current Applied Physics Pub Date : 2024-10-17 DOI: 10.1016/j.cap.2024.10.012
Upendra Kumar , Hyeon Woo Kim , Gyanendra Kumar Maurya , Bincy Babu Raj , Sobhit Singh , Ajay Kumar Kushwaha , Sung Beom Cho , Hyunseok Ko
{"title":"Machine learning-enhanced design of lead-free halide perovskite materials using density functional theory","authors":"Upendra Kumar ,&nbsp;Hyeon Woo Kim ,&nbsp;Gyanendra Kumar Maurya ,&nbsp;Bincy Babu Raj ,&nbsp;Sobhit Singh ,&nbsp;Ajay Kumar Kushwaha ,&nbsp;Sung Beom Cho ,&nbsp;Hyunseok Ko","doi":"10.1016/j.cap.2024.10.012","DOIUrl":"10.1016/j.cap.2024.10.012","url":null,"abstract":"<div><div>The investigation of emerging non-toxic perovskite materials has been undertaken to advance the fabrication of environmentally sustainable lead-free perovskite solar cells. This study introduces a machine learning methodology aimed at predicting innovative halide perovskite materials that hold promise for use in photovoltaic applications. The seven newly predicted materials are as follows: CsMnCl<sub>4</sub>, Rb<sub>3</sub>Mn<sub>2</sub>Cl<sub>9</sub>, Rb<sub>4</sub>MnCl<sub>6</sub>, Rb<sub>3</sub>MnCl<sub>5</sub>, RbMn<sub>2</sub>Cl<sub>7</sub>, RbMn<sub>4</sub>Cl<sub>9</sub>, and CsIn<sub>2</sub>Cl<sub>7</sub>. The predicted compounds are first screened using a machine learning approach, and their validity is subsequently verified through density functional theory calculations. CsMnCl<sub>4</sub> is notable among them, displaying a bandgap of 1.37 eV, falling within the Shockley-Queisser limit, making it suitable for photovoltaic applications. Through the integration of machine learning and density functional theory, this study presents a methodology that is more effective and thorough for the discovery and design of materials.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"69 ","pages":"Pages 1-7"},"PeriodicalIF":2.4,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of an efficient UV absorber and reusable SERS chip by buried Ag ion implantation in Si substrate 通过在硅基底中埋入银离子,开发高效紫外线吸收器和可重复使用的 SERS 芯片
IF 2.4 4区 物理与天体物理
Current Applied Physics Pub Date : 2024-10-16 DOI: 10.1016/j.cap.2024.10.013
Sudip Bhowmick , Biswarup Satpati , Debasree Chowdhury , Prasanta Karmakar
{"title":"Development of an efficient UV absorber and reusable SERS chip by buried Ag ion implantation in Si substrate","authors":"Sudip Bhowmick ,&nbsp;Biswarup Satpati ,&nbsp;Debasree Chowdhury ,&nbsp;Prasanta Karmakar","doi":"10.1016/j.cap.2024.10.013","DOIUrl":"10.1016/j.cap.2024.10.013","url":null,"abstract":"<div><div>We report the formation of a buried ultra-thin layer of Ag clusters in a Si substrate through 6 keV Ag⁺ ion beam implantation, which exhibits a significant enhancement of the Raman signal. This suggests the development of a reliable and reusable chip for Surface Enhanced Raman Spectroscopy (SERS). The presence of a clustered Ag layer in Si also leads to pronounced UV absorption, thus expanding the material's potential in safeguarding from photo-degradation and optoelectronic devices. Physicochemical analysis conducted using X-ray photoelectron spectroscopy (XPS), Atomic Force Microscopy, and cross-sectional Transmission Electron Microscopy (TEM) confirms the formation of a 9 nm buried layer of Ag clusters within the amorphous Si layer. This method of Ag ion implantation in Si offers a simple approach to engineering surfaces with enhanced optical and spectroscopic characteristics.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"68 ","pages":"Pages 267-274"},"PeriodicalIF":2.4,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel green synthesis approach of Fe3O4-MSN/Ag nanocomposite using moringa oleifera extract for magnetic hyperthermia applications 利用油杉提取物合成磁性热疗用 Fe3O4-MSN/Ag 纳米复合材料的新型绿色合成方法
IF 2.4 4区 物理与天体物理
Current Applied Physics Pub Date : 2024-10-16 DOI: 10.1016/j.cap.2024.10.010
Mahardika Yoga Darmawan , Marhan Ebit Saputra , Leni Rumiyanti , Nurul Imani Istiqomah , Nanang Adrianto , Rivaldo Marsel Tumbelaka , Harlina Ardiyanti , Nur Aji Wibowo , Nining Sumawati Asri , Julia Angel , Hasniah Aliah , Ari Dwi Nugraheni , Edi Suharyadi
{"title":"Novel green synthesis approach of Fe3O4-MSN/Ag nanocomposite using moringa oleifera extract for magnetic hyperthermia applications","authors":"Mahardika Yoga Darmawan ,&nbsp;Marhan Ebit Saputra ,&nbsp;Leni Rumiyanti ,&nbsp;Nurul Imani Istiqomah ,&nbsp;Nanang Adrianto ,&nbsp;Rivaldo Marsel Tumbelaka ,&nbsp;Harlina Ardiyanti ,&nbsp;Nur Aji Wibowo ,&nbsp;Nining Sumawati Asri ,&nbsp;Julia Angel ,&nbsp;Hasniah Aliah ,&nbsp;Ari Dwi Nugraheni ,&nbsp;Edi Suharyadi","doi":"10.1016/j.cap.2024.10.010","DOIUrl":"10.1016/j.cap.2024.10.010","url":null,"abstract":"<div><div>Cancer is a major global health problem, and finding effective treatments is a challenging task. Magnetic hyperthermia is one of the promising alternative cancer treatments because the heat generated is localized and safe for healthy cells. Magnetite (Fe₃O₄) nanoparticles are commonly used as heat generating materials. This study focuses on the development of Fe₃O₄ nanoparticles through green synthesis using <em>Moringa oleifera</em> extract. Fe₃O₄ is coated with silver nanoparticles using mesoporous silica. Silver (Ag) nanoparticles are used because of their biocompatibility while mesoporous silica nanoparticles (MSN) because of their ability to carry other agents and their relatively low toxicity. X-ray diffraction revealed that the addition of Ag reduced the average crystallite size of the Fe₃O₄-MSN/Ag composite to around 15.7–16.1 nm, with an average particle size of 21.3 nm. The presence of magnetite and silver was confirmed by electron microscopy techniques. Magnetic tests showed that the composite had a saturation magnetization of about 10 emu/g. Heat generation tests showed that the composite could increase the temperature by more than 5 °C, exceeding the minimum temperature required for effective hyperthermia treatment, with a specific absorption rate (SAR) of 1.59 W/g at a field strength of 150 Oe and a frequency of 20 kHz. The effective SAR value obtained is almost 5 times greater compared to commercial Fe₃O₄. In vitro cytotoxicity tests utilize NIH3T3 fibroblasts showed that Fe₃O₄-MSN/Ag was non-toxic. These results indicate that this magnetic nanocomposite has significantly improved structural, optical, magnetic, and thermal properties, making it a promising candidate for cancer hyperthermia treatment.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"68 ","pages":"Pages 242-256"},"PeriodicalIF":2.4,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hierarchical Bi2S3 nanothorn on ZnO core-branch photoelectrode: A promising heterostructure for enhanced photoelectrochemical water splitting ZnO 核支光电电极上的分层 Bi2S3 纳米刺:用于增强光电化学水分离的前景广阔的异质结构
IF 2.4 4区 物理与天体物理
Current Applied Physics Pub Date : 2024-10-15 DOI: 10.1016/j.cap.2024.10.009
S. Sadhasivam, T. Sadhasivam, K. Selvakumar, T.H. Oh
{"title":"Hierarchical Bi2S3 nanothorn on ZnO core-branch photoelectrode: A promising heterostructure for enhanced photoelectrochemical water splitting","authors":"S. Sadhasivam,&nbsp;T. Sadhasivam,&nbsp;K. Selvakumar,&nbsp;T.H. Oh","doi":"10.1016/j.cap.2024.10.009","DOIUrl":"10.1016/j.cap.2024.10.009","url":null,"abstract":"<div><div>The zinc oxide semiconductor associated with defects and their recombination effect restricts the development of photoelectrode for hydrogen evolution. The combination of semiconductor hetero-junction and hierarchical interface of ZnO/Bi<sub>2</sub>S<sub>3</sub> photoelectrode fabricated. In this study, heterostructure ZnO/Bi<sub>2</sub>S<sub>3</sub> were studied as a photoanode with their impact of oxygen vacancy in ZnO nano rods. The trace of the Bi<sub>2</sub>S<sub>3</sub> on the ZnO was studied and compared with pristine and oxygen annealed ZnO nano rods. The photon-luminescence studies reveal that shallow donor and acceptor defect in ZnO and restricted by Bi<sub>2</sub>S<sub>3</sub> heterostructure. The less defect contemplations in the photoanodes accelerates up electron and hole migration leading to significant built-in potential and photocurrent generation. The appropriate method has been followed to architype less interfacial defect in ZnO(300)/Bi<sub>2</sub>S<sub>3</sub> photoanode and boosted the photo-redox reactions for efficient hydrogen evolution. The photoanode exhibits substantial properties of photocurrent density 0.33 mA/cm<sup>2</sup>, charge transfer resistance of 700 Ω cm<sup>2</sup> and higher inbuilt potential of −0.88V vs Ag/AgCl with 0.17 % applied bias photon to electron conversion efficiency and 0.11 % solar to hydrogen conversion efficiency.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"68 ","pages":"Pages 257-266"},"PeriodicalIF":2.4,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Poly(aniline)-multiwall carbon nanotube (PANI@MWCNT) composite as high-cost Pt free counter electrode for dye-sensitized solar cells 聚(苯胺)-多壁碳纳米管(PANI@MWCNT)复合材料作为染料敏化太阳能电池的高成本无铂对电极
IF 2.4 4区 物理与天体物理
Current Applied Physics Pub Date : 2024-10-09 DOI: 10.1016/j.cap.2024.10.006
Alagumalai Manimekalai , Kuppu Sakthi Velu , Sonaimuthu Mohandoss , Rizwan Wahab , Naushad Ahmad , Jeong Hyun Seo , Seho Sun , Yong Rok Lee
{"title":"Poly(aniline)-multiwall carbon nanotube (PANI@MWCNT) composite as high-cost Pt free counter electrode for dye-sensitized solar cells","authors":"Alagumalai Manimekalai ,&nbsp;Kuppu Sakthi Velu ,&nbsp;Sonaimuthu Mohandoss ,&nbsp;Rizwan Wahab ,&nbsp;Naushad Ahmad ,&nbsp;Jeong Hyun Seo ,&nbsp;Seho Sun ,&nbsp;Yong Rok Lee","doi":"10.1016/j.cap.2024.10.006","DOIUrl":"10.1016/j.cap.2024.10.006","url":null,"abstract":"<div><div>In this study, we synthesized a poly (aniline)-multiwall carbon nanotube (PANI@MWCNT) composite for use as a counter electrode (CE) in dye-sensitized solar cells. Moreover, FE-SEM and HR-TEM images of PANI@MWCNT revealed carbon nanotube/ropes embedded in the polymer matrix. An X-ray diffraction pattern confirmed the amorphous nature of the composite. Further, Electrochemical impedance spectroscopy studies indicated a charge transport resistance value (R<sub>ct</sub>) of 4.36 KΩ for PANI@MWCNT. CV studies demonstrated improved electrocatalytic performance and faster redox behavior in the PANI@MWCNT composite. BET analysis measured the pore size of the as-prepared composite to be 15–50 nm. Subsequently, the as-synthesized PANI, PANT@MWNCT, pristine MWCNT, and platinum were evaluated as CEs in DSSCs using a polyethylene oxide polymer-based liquid electrolyte and a TiO<sub>2</sub> nanocrystalline photoanode. Among these CEs, the PANI@MWCNT CE exhibited an efficiency of 8.07 %, and the stability test indicated that the as-prepared composite CE retained 7.81 % efficiency after 15 days.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"68 ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142427495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信