利用极化螺旋结构增强无铅铁酸铋-钛酸锶多层膜的储能性能

IF 2.4 4区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ha Thi Dang , Ba-Hieu Vu , Van-Hai Dinh , Le Van Lich
{"title":"利用极化螺旋结构增强无铅铁酸铋-钛酸锶多层膜的储能性能","authors":"Ha Thi Dang ,&nbsp;Ba-Hieu Vu ,&nbsp;Van-Hai Dinh ,&nbsp;Le Van Lich","doi":"10.1016/j.cap.2024.12.011","DOIUrl":null,"url":null,"abstract":"<div><div>The quest for environmentally friendly lead-free dielectrics with exceptional energy storage performance poses a significant challenge. Here, we propose an alternative approach through a rational design of lead-free ferroelectric/paraelectric (BiFeO<sub>3</sub>/SrTiO<sub>3</sub>) multilayers. Utilizing the phase-field model, we demonstrate that the energy storage density and charge–discharge efficiency can be optimized by adjusting the volume fractions of BiFeO<sub>3</sub>. A volume fraction of 0.69 BiFeO<sub>3</sub> yields the highest discharge energy storage density (58.01 J/cm<sup>3</sup>) and near-perfect charge-discharge efficiency (99.8%) at 4 MV/cm. The multilayers exhibit varying hysteresis behaviors, from ferroelectric to relaxor to paraelectric-like characteristics, depending on the BiFeO<sub>3</sub> ratio. This study reveals that different polarization domain structures correspond to these behaviors, transitioning from stripe to spiral to in-plane patterns as the ferroelectric volume is reduced. Notably, the polarization spiral structure maintains excellent energy storage across temperatures up to 550<!--> <sup>∘</sup>C. These insights are crucial for developing high-performance dielectrics for electrical energy storage.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"71 ","pages":"Pages 91-98"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced energy storage performance of lead-free bismuth ferrite-strontium titanate multilayers via polarization spiral structures\",\"authors\":\"Ha Thi Dang ,&nbsp;Ba-Hieu Vu ,&nbsp;Van-Hai Dinh ,&nbsp;Le Van Lich\",\"doi\":\"10.1016/j.cap.2024.12.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The quest for environmentally friendly lead-free dielectrics with exceptional energy storage performance poses a significant challenge. Here, we propose an alternative approach through a rational design of lead-free ferroelectric/paraelectric (BiFeO<sub>3</sub>/SrTiO<sub>3</sub>) multilayers. Utilizing the phase-field model, we demonstrate that the energy storage density and charge–discharge efficiency can be optimized by adjusting the volume fractions of BiFeO<sub>3</sub>. A volume fraction of 0.69 BiFeO<sub>3</sub> yields the highest discharge energy storage density (58.01 J/cm<sup>3</sup>) and near-perfect charge-discharge efficiency (99.8%) at 4 MV/cm. The multilayers exhibit varying hysteresis behaviors, from ferroelectric to relaxor to paraelectric-like characteristics, depending on the BiFeO<sub>3</sub> ratio. This study reveals that different polarization domain structures correspond to these behaviors, transitioning from stripe to spiral to in-plane patterns as the ferroelectric volume is reduced. Notably, the polarization spiral structure maintains excellent energy storage across temperatures up to 550<!--> <sup>∘</sup>C. These insights are crucial for developing high-performance dielectrics for electrical energy storage.</div></div>\",\"PeriodicalId\":11037,\"journal\":{\"name\":\"Current Applied Physics\",\"volume\":\"71 \",\"pages\":\"Pages 91-98\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567173924002931\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173924002931","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

寻求具有卓越储能性能的环保无铅电介质是一项重大挑战。在这里,我们提出了一种替代方法,通过合理设计无铅铁电/准电(BiFeO3/SrTiO3)多层材料。利用相场模型,我们证明了通过调整BiFeO3的体积分数可以优化储能密度和充放电效率。当BiFeO3体积分数为0.69时,在4 MV/cm下的放电储能密度达到58.01 J/cm3,充放电效率达到99.8%。根据BiFeO3的比例,多层材料表现出不同的磁滞特性,从铁电特性到弛豫特性再到类准电特性。研究表明,不同的极化畴结构对应于这些行为,随着铁电体积的减小,从条纹到螺旋再到面内模式转变。值得注意的是,极化螺旋结构在550°C的高温下仍能保持出色的能量储存能力。这些见解对于开发用于电能存储的高性能电介质至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced energy storage performance of lead-free bismuth ferrite-strontium titanate multilayers via polarization spiral structures

Enhanced energy storage performance of lead-free bismuth ferrite-strontium titanate multilayers via polarization spiral structures
The quest for environmentally friendly lead-free dielectrics with exceptional energy storage performance poses a significant challenge. Here, we propose an alternative approach through a rational design of lead-free ferroelectric/paraelectric (BiFeO3/SrTiO3) multilayers. Utilizing the phase-field model, we demonstrate that the energy storage density and charge–discharge efficiency can be optimized by adjusting the volume fractions of BiFeO3. A volume fraction of 0.69 BiFeO3 yields the highest discharge energy storage density (58.01 J/cm3) and near-perfect charge-discharge efficiency (99.8%) at 4 MV/cm. The multilayers exhibit varying hysteresis behaviors, from ferroelectric to relaxor to paraelectric-like characteristics, depending on the BiFeO3 ratio. This study reveals that different polarization domain structures correspond to these behaviors, transitioning from stripe to spiral to in-plane patterns as the ferroelectric volume is reduced. Notably, the polarization spiral structure maintains excellent energy storage across temperatures up to 550 C. These insights are crucial for developing high-performance dielectrics for electrical energy storage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Applied Physics
Current Applied Physics 物理-材料科学:综合
CiteScore
4.80
自引率
0.00%
发文量
213
审稿时长
33 days
期刊介绍: Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications. Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques. Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals. Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review. The Journal is owned by the Korean Physical Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信