Andrei I. Siahlo , Sergey A. Vyrko , Andrey M. Popov , Nikolai A. Poklonski , Yurii E. Lozovik
{"title":"基于碳纳米卷的存储电池","authors":"Andrei I. Siahlo , Sergey A. Vyrko , Andrey M. Popov , Nikolai A. Poklonski , Yurii E. Lozovik","doi":"10.1016/j.cap.2024.12.009","DOIUrl":null,"url":null,"abstract":"<div><div>The scheme and operational principles of the nanoelectromechanical memory cells are proposed. These cells, which use two electrodes and a third gate electrode, operate by electrostatic unrolling of a carbon nanoscroll due to an applied voltage. Memory cell operation relies on two stable states: nonconducting Off state (rolled nanoscroll) and conducting On state (partially or fully unrolled nanoscroll). Based on the analysis of the memory cell energetics, the switching voltage between Off and On states is calculated as a function of the cell dimensions. The lower limit of the switching voltage is estimated to be about 5 V for two electrode cells and 15 V for cells with a third gate electrode. For cell dimensions that result in full nanoscroll unrolling in the On state, a return to the Off state is impossible. These cells are promising for archival memory applications, and the optimal cell dimensions for such applications are determined.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"71 ","pages":"Pages 99-105"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon nanoscroll-based memory cell\",\"authors\":\"Andrei I. Siahlo , Sergey A. Vyrko , Andrey M. Popov , Nikolai A. Poklonski , Yurii E. Lozovik\",\"doi\":\"10.1016/j.cap.2024.12.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The scheme and operational principles of the nanoelectromechanical memory cells are proposed. These cells, which use two electrodes and a third gate electrode, operate by electrostatic unrolling of a carbon nanoscroll due to an applied voltage. Memory cell operation relies on two stable states: nonconducting Off state (rolled nanoscroll) and conducting On state (partially or fully unrolled nanoscroll). Based on the analysis of the memory cell energetics, the switching voltage between Off and On states is calculated as a function of the cell dimensions. The lower limit of the switching voltage is estimated to be about 5 V for two electrode cells and 15 V for cells with a third gate electrode. For cell dimensions that result in full nanoscroll unrolling in the On state, a return to the Off state is impossible. These cells are promising for archival memory applications, and the optimal cell dimensions for such applications are determined.</div></div>\",\"PeriodicalId\":11037,\"journal\":{\"name\":\"Current Applied Physics\",\"volume\":\"71 \",\"pages\":\"Pages 99-105\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567173924002906\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173924002906","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
The scheme and operational principles of the nanoelectromechanical memory cells are proposed. These cells, which use two electrodes and a third gate electrode, operate by electrostatic unrolling of a carbon nanoscroll due to an applied voltage. Memory cell operation relies on two stable states: nonconducting Off state (rolled nanoscroll) and conducting On state (partially or fully unrolled nanoscroll). Based on the analysis of the memory cell energetics, the switching voltage between Off and On states is calculated as a function of the cell dimensions. The lower limit of the switching voltage is estimated to be about 5 V for two electrode cells and 15 V for cells with a third gate electrode. For cell dimensions that result in full nanoscroll unrolling in the On state, a return to the Off state is impossible. These cells are promising for archival memory applications, and the optimal cell dimensions for such applications are determined.
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.