Current Applied Physics最新文献

筛选
英文 中文
Impact of Ni on the structure and electrochemical behavior of δ-MnO2 cathodes in zinc ion batteries Ni对锌离子电池δ-MnO2阴极结构和电化学行为的影响
IF 2.4 4区 物理与天体物理
Current Applied Physics Pub Date : 2025-01-31 DOI: 10.1016/j.cap.2025.01.014
Mohamad Afiefudin , Asep Ridwan Setiawan , Fadli Rohman , Veinardi Suendo , Achmad Prayogi
{"title":"Impact of Ni on the structure and electrochemical behavior of δ-MnO2 cathodes in zinc ion batteries","authors":"Mohamad Afiefudin ,&nbsp;Asep Ridwan Setiawan ,&nbsp;Fadli Rohman ,&nbsp;Veinardi Suendo ,&nbsp;Achmad Prayogi","doi":"10.1016/j.cap.2025.01.014","DOIUrl":"10.1016/j.cap.2025.01.014","url":null,"abstract":"<div><div>The utilization of MnO<sub>2</sub> as a cathode material in energy storage systems such as rechargeable aqueous zinc-ion batteries shows great promise for development due to its high safety, environmental friendliness, and cost-effectiveness. Nevertheless, the manganese dioxide cathode suffers from a dissolution-redeposition reaction, leading to poor structural stability. To address these issues, this study focuses on modifying the structural properties of <em>δ-</em>MnO<sub>2</sub> to overcome its drawbacks, such as low capacity and cycling stability. By synthesizing Ni-<em>δ-</em>MnO<sub>2</sub> with enhanced crystalline structure, expanded lattice spacing, improved conductivity, rapid diffusion of Zn<sup>2+</sup> ions, and electron transfer are enabled. This results in a notable high capacity of 350 mA h g<sup>−1</sup> at 50 mA g<sup>−1</sup>, accompanied by enduring cycle stability, with the capacity maintained over 200 cycles. The morphology evolution and structure of Ni- <em>δ-</em>MnO<sub>2</sub> are believed to enhance ion transportation, rendering it a promising cathode material for applications in aqueous zinc-ion batteries.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"72 ","pages":"Pages 18-27"},"PeriodicalIF":2.4,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143349577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and fabrication of multi-band SRR sensors using 3D printing for liquid characterization 3D打印液体表征多波段SRR传感器的设计与制造
IF 2.4 4区 物理与天体物理
Current Applied Physics Pub Date : 2025-01-31 DOI: 10.1016/j.cap.2025.01.018
Irfan Yahaya , Ahmad Nurhelmy Adam , Ahmad Adnan Abu Bakar , Shahino Mah Abdullah , Nizam Tamchek , Ahmad F. Alforidi , Ahmed Alahmadi , Mohd Ifwat Mohd Ghazali
{"title":"Design and fabrication of multi-band SRR sensors using 3D printing for liquid characterization","authors":"Irfan Yahaya ,&nbsp;Ahmad Nurhelmy Adam ,&nbsp;Ahmad Adnan Abu Bakar ,&nbsp;Shahino Mah Abdullah ,&nbsp;Nizam Tamchek ,&nbsp;Ahmad F. Alforidi ,&nbsp;Ahmed Alahmadi ,&nbsp;Mohd Ifwat Mohd Ghazali","doi":"10.1016/j.cap.2025.01.018","DOIUrl":"10.1016/j.cap.2025.01.018","url":null,"abstract":"<div><div>A microstrip line split ring resonator (SRR) sensor is introduced for liquid profiling. The sensor features a microstrip transmission line with two identical SRRs, detecting differential permittivity by loading liquid samples onto the SRRs.3D-printing stereolithography technology with high temperature resin is used to build the sensors. The printed sensor undergoes metallization process by depositing titanium and copper layer, followed by copper electroplating. Different Ti Cu sputtering time was studied to determine optimum parameters for sensor application. It only necessitates a minimal sample volume for detection as any changes in the sample loading induces a change in the resonance frequency of the SRR. The sensors exhibited strong performance, distinguishing between chemicals like methanol, IPA, and silicone oil based on resonance frequency shifts, with the 3.5 GHz sensor achieving the highest sensitivity (1.09 %). The utilization of additive manufacturing for producing 3D-printed sensors could meet the demand for quick and cost-effective microwave sensors.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"72 ","pages":"Pages 93-104"},"PeriodicalIF":2.4,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143453962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable synthesis of magnetic nanoparticles: Biological applications of Cedrus deodara extract 磁性纳米颗粒的可持续合成:雪松提取物的生物学应用
IF 2.4 4区 物理与天体物理
Current Applied Physics Pub Date : 2025-01-28 DOI: 10.1016/j.cap.2025.01.015
Shilpa Kumari , Mohit Sahni , Soumya Pandit , Neha Verma , Firdaus Mohamad Hamzah , Kuldeep Sharma , Kanu Priya
{"title":"Sustainable synthesis of magnetic nanoparticles: Biological applications of Cedrus deodara extract","authors":"Shilpa Kumari ,&nbsp;Mohit Sahni ,&nbsp;Soumya Pandit ,&nbsp;Neha Verma ,&nbsp;Firdaus Mohamad Hamzah ,&nbsp;Kuldeep Sharma ,&nbsp;Kanu Priya","doi":"10.1016/j.cap.2025.01.015","DOIUrl":"10.1016/j.cap.2025.01.015","url":null,"abstract":"<div><div>This research article explains a green synthesis of α-Fe₂O₃ nanoparticles (NPs) utilizing <em>Cedrus deodara</em> wood extract. The wood extract of this medicinal plant was used to synthesize the α-Fe₂O₃ NPs and utilized in various applications including biological applications on Osteosarcoma (MG63) and Lung cancer (A549). Along with this, we have also estimated its anti-bacterial properties on <em>P. aeruginosa</em> bacterial strain. The α-Fe₂O₃ NPs showed high antioxidant activity with DPPH and FRAP values of 86.05 % and 86.04 %, outperforming the antioxidant capacity of <em>Cedrus deodara</em> extract alone (79.16 % and 71.09 %). In cytotoxicity tests, they effectively inhibited osteosarcoma (MG63) and lung carcinoma (A549) cell lines, showing greater cytotoxicity against MG63 cells (IC<sub>50</sub> of 19.86 μg/mL) than A549 cells (IC<sub>50</sub> of 24.66 μg/mL) after 24 h. They also displayed strong antibacterial activity. This work presents a novel biogenic α-Fe₂O₃ nanoparticle synthesized from <em>Cedrus deodara</em> extract, exhibiting exceptional antioxidant, cytotoxic, and antibacterial activities.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"72 ","pages":"Pages 1-10"},"PeriodicalIF":2.4,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143093097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sodium Tantalate doping-induced phase structure Regulation and electrical property enhancement in lead-free (Bi0.5Na0.5) 0.94Ba0.06TiO3 ceramics 钽酸钠掺杂诱导无铅(Bi0.5Na0.5) 0.94Ba0.06TiO3陶瓷的相结构调控及电性能增强
IF 2.4 4区 物理与天体物理
Current Applied Physics Pub Date : 2025-01-20 DOI: 10.1016/j.cap.2025.01.013
Juanjuan Wang , Pengkang Ma , Qizhen Chai , Fusheng Lai , Hongliang Du , Li Jin , Zhanhui Peng , Xiaolian Chao , Tianyi Yang
{"title":"Sodium Tantalate doping-induced phase structure Regulation and electrical property enhancement in lead-free (Bi0.5Na0.5) 0.94Ba0.06TiO3 ceramics","authors":"Juanjuan Wang ,&nbsp;Pengkang Ma ,&nbsp;Qizhen Chai ,&nbsp;Fusheng Lai ,&nbsp;Hongliang Du ,&nbsp;Li Jin ,&nbsp;Zhanhui Peng ,&nbsp;Xiaolian Chao ,&nbsp;Tianyi Yang","doi":"10.1016/j.cap.2025.01.013","DOIUrl":"10.1016/j.cap.2025.01.013","url":null,"abstract":"<div><div>Ceramics with superior energy storage properties, serving as the dielectric layer of capacitors, are crucial for constructing high performance capacitors. In this study, we designed and characterized (1-<em>x</em>) (0.94Bi<sub>0.5</sub>Na<sub>0.5</sub>Ti0<sub>3</sub>-0.06BaTiO<sub>3</sub>)-<em>x</em>NaTaO<sub>3</sub> (BNBT-<em>x</em>NT) lead-free ceramics with enhanced energy storage capabilities. The incorporation of NaTaO<sub>3</sub> induced a transition from non-polar to polar relaxation phase and transformed nano-domains into nano-micro domains. Under an applied electric field of 250 kV/cm, the 0.92 BNBT-0.08NT ceramics exhibited significantly higher effective energy storage density <em>W</em><sub>rec</sub> (3.07 J/cm<sup>3</sup>) and energy storage efficiency <em>η</em> (68 %). Moreover, these ceramics demonstrated remarkable discharge energy density <em>W</em><sub>d</sub> (1.1 J/cm<sup>3</sup>), high power density <em>P</em><sub>D</sub> (75 MW/cm<sup>3</sup>), and fast charge and discharge speed <em>t</em><sub>0.9</sub> (258 ns). The exceptional stability in terms of energy storage performance suggests that BNBT-0.08NT ceramics hold great potential for pulse power applications.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"71 ","pages":"Pages 199-206"},"PeriodicalIF":2.4,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143169210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal curing of interface defects at a-si:H/c-Si in heterojunction with intrinsic thin layer (HIT) solar cell processing 异质结a-si:H/c-Si界面缺陷的热固化与本征薄层(HIT)太阳能电池工艺
IF 2.4 4区 物理与天体物理
Current Applied Physics Pub Date : 2025-01-17 DOI: 10.1016/j.cap.2025.01.012
Mengmeng Chu , Junhan Bae , Maha Nur Aida , Hasnain Yousuf , Jaljalalul Abedin Jony , Rafi Ur Rahman , Muhammad Quddamah Khokhar , Sangheon Park , Junsin Yi
{"title":"Thermal curing of interface defects at a-si:H/c-Si in heterojunction with intrinsic thin layer (HIT) solar cell processing","authors":"Mengmeng Chu ,&nbsp;Junhan Bae ,&nbsp;Maha Nur Aida ,&nbsp;Hasnain Yousuf ,&nbsp;Jaljalalul Abedin Jony ,&nbsp;Rafi Ur Rahman ,&nbsp;Muhammad Quddamah Khokhar ,&nbsp;Sangheon Park ,&nbsp;Junsin Yi","doi":"10.1016/j.cap.2025.01.012","DOIUrl":"10.1016/j.cap.2025.01.012","url":null,"abstract":"<div><div>This study explores the use of thermal treatment to recover defects at the a-Si:H/c-Si interface caused by transparent conductive oxide (TCO) deposition, improving passivation by diminishing interface defect density (D<sub>it</sub>). A 200 °C thermal treatment enhanced HIT solar cell performance, increasing the effective bulk lifetime to 1.1 ms at a minority carrier density of 1.0 × 10<sup>1</sup>⁵ cm⁻³. Key performance metrics improved, including J<sub>sc</sub> (from 38.70 to 38.88 mA/cm<sup>2</sup>), V<sub>oc</sub> (from 727 to 730 mV), FF (from 75.50 % to 77.82 %), and efficiency (from 21.27 % to 22.09 %). AFORS-HET simulations showed that D<sub>it</sub> must be less than 1 × 10<sup>11</sup> cm⁻<sup>2</sup> eV⁻<sup>1</sup> for optimal efficiency. The best solar cell performance, achieved in simulations, included J<sub>sc</sub> of 37.71 mA/cm<sup>2</sup>, V<sub>oc</sub> of 716.8 mV, FF of 83.50 %, and efficiency of 22.57 % at D<sub>it</sub> of 1 × 10⁹ cm⁻<sup>2</sup> eV⁻<sup>1</sup>. This combined approach offers insights into defect management for solar cell technology.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"71 ","pages":"Pages 184-189"},"PeriodicalIF":2.4,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143169208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An overview of tin based perovskite solar cells: Stability and efficiency 锡基钙钛矿太阳能电池综述:稳定性和效率
IF 2.4 4区 物理与天体物理
Current Applied Physics Pub Date : 2025-01-15 DOI: 10.1016/j.cap.2025.01.010
Aliyu Sani Abdulkarim , Monika Srivastava , Thejakhrielie Ngulezhu , Diksha Singh , Karol Strzałkowski , Ram Chandra Singh , M.Z.A. Yahya , S.N.F. Yusuf , Markus Diantoro
{"title":"An overview of tin based perovskite solar cells: Stability and efficiency","authors":"Aliyu Sani Abdulkarim ,&nbsp;Monika Srivastava ,&nbsp;Thejakhrielie Ngulezhu ,&nbsp;Diksha Singh ,&nbsp;Karol Strzałkowski ,&nbsp;Ram Chandra Singh ,&nbsp;M.Z.A. Yahya ,&nbsp;S.N.F. Yusuf ,&nbsp;Markus Diantoro","doi":"10.1016/j.cap.2025.01.010","DOIUrl":"10.1016/j.cap.2025.01.010","url":null,"abstract":"<div><div>Perovskite solar cells (PSCs) are a category of third-generation solar cells technology, which gained significant attention due to their cost-effectiveness and electricity generation capabilities. However, there are concerns regarding the use of lead (Pb) in traditional PSCs, particularly its potential impact on the environment and human health. Consequently, the advancement of lead-free perovskite solar cells is of utmost importance to safeguard both the environment and human well-being. Tin-based perovskites present a promising alternative to lead-based PSCs. Tin (Sn) has shown promising optoelectronic properties and can be used as a substitute for lead. However, there are obstacles associated with the weak stability of Sn<sup>2+</sup> ions that must be overcome in order to develop tin-based PSCs that are both extremely stable and efficient. This review specifically examines the progress made within the field of lead free tin-based perovskite solar cells, with a particular focus on stability and efficiency. The discussion delves into the effect of various cations and their compositions on the devices' stability. It is important to mention that devices based on tin halide perovskites have achieved an unexpectedly high level of efficiency in a short amount of time. Moreover, this review provides a summary of the strategies that have been employed to enhance, and improve the stability and the overall efficiency of tin-based PSCs.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"71 ","pages":"Pages 190-198"},"PeriodicalIF":2.4,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143169209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of sintering temperatures on physico-mechanical properties of single-phase magnesium borate nanorods 烧结温度对单相硼酸镁纳米棒物理力学性能的影响
IF 2.4 4区 物理与天体物理
Current Applied Physics Pub Date : 2025-01-10 DOI: 10.1016/j.cap.2025.01.008
Vaibhav Singh , Niraj Singh Mehta , Subhashish Dey , Manas Ranjan Majhi
{"title":"Effect of sintering temperatures on physico-mechanical properties of single-phase magnesium borate nanorods","authors":"Vaibhav Singh ,&nbsp;Niraj Singh Mehta ,&nbsp;Subhashish Dey ,&nbsp;Manas Ranjan Majhi","doi":"10.1016/j.cap.2025.01.008","DOIUrl":"10.1016/j.cap.2025.01.008","url":null,"abstract":"<div><div>An optimized molar ratio of magnesia (MgO) and boric acid (H<sub>3</sub>BO<sub>3</sub>) was used to synthesize the nanorod of single-phase magnesium borate (Mg<sub>2</sub>B<sub>2</sub>O<sub>5</sub>) through a solution reaction cum sintering process. Due to their impressive mechanical strength and resistance to heat and corrosion, magnesium borates (MB) nanorods are extensively applicable as reinforcing materials. A meticulous examination was undertaken to assess the characterization and physico-mechanical properties of Mg<sub>2</sub>B<sub>2</sub>O<sub>5</sub> (MB) nanorods during the sintering process between 700 °C and 1200 °C. Mechanical properties of synthesized MB compacts were investigated between 700 and 1200 °C. The maximum value of high temperature flexural strength (HMOR) and room temperature flexural strength (CMOR) achieved by MB compacts are 42 MPa and 53 MPa respectively. Furthermore, the compacts have a maximum compressive strength of 118 MPa and a maximum hardness of 64 HV at 1100 °C, making it promising reinforcing material for composites.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"71 ","pages":"Pages 163-168"},"PeriodicalIF":2.4,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143169212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic properties of van der Waals ferromagnet Fe3GeTe2 nanosheets grown by flux-assisted growth 范德华铁磁体Fe3GeTe2纳米片的磁特性
IF 2.4 4区 物理与天体物理
Current Applied Physics Pub Date : 2025-01-09 DOI: 10.1016/j.cap.2025.01.009
Seungchul Choi , In Hak Lee , Yeong Gwang Khim , Jung Yun Kee , Tae Gyu Rhee , Hyo Won Seoh , Hyuk Jin Kim , Jun Woo Choi , Young Jun Chang
{"title":"Magnetic properties of van der Waals ferromagnet Fe3GeTe2 nanosheets grown by flux-assisted growth","authors":"Seungchul Choi ,&nbsp;In Hak Lee ,&nbsp;Yeong Gwang Khim ,&nbsp;Jung Yun Kee ,&nbsp;Tae Gyu Rhee ,&nbsp;Hyo Won Seoh ,&nbsp;Hyuk Jin Kim ,&nbsp;Jun Woo Choi ,&nbsp;Young Jun Chang","doi":"10.1016/j.cap.2025.01.009","DOIUrl":"10.1016/j.cap.2025.01.009","url":null,"abstract":"<div><div>Among two-dimensional (2D) van der Waals (vdW) materials, Fe<sub>3</sub>GeTe<sub>2</sub> (FGT), a 2D vdW ferromagnetic material, has gained significant interest due to its high Curie temperature and perpendicular magnetic anisotropy. Despite the difficulties in fabricating high-quality crystals, the flux-assisted growth (FAG) method has recently emerged as a promising technique for synthesizing 2D vdW materials. In this study, we employed the FAG method to fabricate crystalline FGT nanosheets under varied growth parameters. Magneto-optical Kerr effect (MOKE) measurements revealed that the FGT nanosheets exhibit perpendicular magnetic anisotropy with a Curie temperature of 222 K. Additionally, the MOKE data indicate the presence of exchange bias phenomena, likely due to the FeO phase associated with oxidized FGT surface. These findings enhance our understanding of the fundamental physics of FGT nanosheets and contribute to the advancement of diverse 2D magnetic device applications.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"71 ","pages":"Pages 169-174"},"PeriodicalIF":2.4,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143169213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The coexistence of electrostrictive and magnetostrictive properties in a polycrystalline ZnO film 多晶ZnO薄膜的电致伸缩和磁致伸缩共存特性
IF 2.4 4区 物理与天体物理
Current Applied Physics Pub Date : 2025-01-08 DOI: 10.1016/j.cap.2025.01.007
Suman Guchhait , H. Aireddy , Niladri Sekhar Kander , A.K. Das
{"title":"The coexistence of electrostrictive and magnetostrictive properties in a polycrystalline ZnO film","authors":"Suman Guchhait ,&nbsp;H. Aireddy ,&nbsp;Niladri Sekhar Kander ,&nbsp;A.K. Das","doi":"10.1016/j.cap.2025.01.007","DOIUrl":"10.1016/j.cap.2025.01.007","url":null,"abstract":"<div><div>A polycrystalline ZnO film is fabricated on a cantilevered substrate of silicon by pulsed laser deposition (PLD) technique and investigated the electrostrictive and magnetostrictive (in-plane and out-of-plane) properties by an indigenously developed optical cantilever beam magnetometer (CBM) setup. The film shows excellent electrostrictive as well as magnetostrictive response at room temperature (300 K) with high values of piezoelectric strain coefficient (<span><math><mrow><mo>|</mo><mi>d</mi><mo>|</mo></mrow></math></span> = 69.69 p.m./V), piezoelectric stress coefficient (<span><math><mrow><mo>|</mo><mi>e</mi><mo>|</mo></mrow></math></span> = 7.75 C/m<sup>2</sup>), saturation magnetostriction (<span><math><mrow><msub><mi>λ</mi><mi>s</mi></msub></mrow></math></span> = 1286.15 ppm &amp; 647.99 ppm), and strain sensitivity (dλ/dH = 12.63 × 10 <sup>−9</sup> A<sup>−1</sup>m &amp; 8.29 × 10 <sup>−9</sup> A<sup>−1</sup>m) in in-plane and out-of-plane configuration, respectively. The emergence of significant electrostrictive and magnetostrictive responses makes the ZnO film well suited for use as a ferroelectric (FE) or as a ferromagnetic (FM) material in electric field-controlled multiferroic magnetoelectric composites (i.e., FM/FE heterostructure) applicable for the development of novel spintronic devices.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"71 ","pages":"Pages 144-151"},"PeriodicalIF":2.4,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143170836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of dopants and strains on the oxygen vacancy formation in VO2 掺杂剂和应变对VO2中氧空位形成的影响
IF 2.4 4区 物理与天体物理
Current Applied Physics Pub Date : 2025-01-08 DOI: 10.1016/j.cap.2025.01.001
Inseo Kim, Han-Youl Ryu, Minseok Choi
{"title":"Impact of dopants and strains on the oxygen vacancy formation in VO2","authors":"Inseo Kim,&nbsp;Han-Youl Ryu,&nbsp;Minseok Choi","doi":"10.1016/j.cap.2025.01.001","DOIUrl":"10.1016/j.cap.2025.01.001","url":null,"abstract":"<div><div>We perform first-principles calculations to examine the relationship of the oxygen vacancy (<span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>O</mi></mrow></msub></math></span>) formation with dopants and mechanical strains in metallic tetragonal VO<sub>2</sub>. Both compressive and tensile biaxial strains lower the formation energy of <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>O</mi></mrow></msub></math></span>, and the lowering of the formation energy is more pronounced under tensile strain. When six dopants, which possess different charge state and ionic radius, are introduced, the formation energy of <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>O</mi></mrow></msub></math></span> increases, indicating that the dopants may suppress the <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>O</mi></mrow></msub></math></span> formation in VO<sub>2</sub>. Strains lead to similar trends in the undoped case, i.e., strains reduce the <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>O</mi></mrow></msub></math></span> formation energy in the doped VO<sub>2</sub>. Based on the results, we suggest that the difference in atomic relaxations of the two kinds of V–O bonds plays an important role in determining the formation energy of <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>O</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"71 ","pages":"Pages 125-129"},"PeriodicalIF":2.4,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143170837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信