{"title":"Impact of dopants and strains on the oxygen vacancy formation in VO2","authors":"Inseo Kim, Han-Youl Ryu, Minseok Choi","doi":"10.1016/j.cap.2025.01.001","DOIUrl":null,"url":null,"abstract":"<div><div>We perform first-principles calculations to examine the relationship of the oxygen vacancy (<span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>O</mi></mrow></msub></math></span>) formation with dopants and mechanical strains in metallic tetragonal VO<sub>2</sub>. Both compressive and tensile biaxial strains lower the formation energy of <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>O</mi></mrow></msub></math></span>, and the lowering of the formation energy is more pronounced under tensile strain. When six dopants, which possess different charge state and ionic radius, are introduced, the formation energy of <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>O</mi></mrow></msub></math></span> increases, indicating that the dopants may suppress the <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>O</mi></mrow></msub></math></span> formation in VO<sub>2</sub>. Strains lead to similar trends in the undoped case, i.e., strains reduce the <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>O</mi></mrow></msub></math></span> formation energy in the doped VO<sub>2</sub>. Based on the results, we suggest that the difference in atomic relaxations of the two kinds of V–O bonds plays an important role in determining the formation energy of <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>O</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"71 ","pages":"Pages 125-129"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173925000021","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We perform first-principles calculations to examine the relationship of the oxygen vacancy () formation with dopants and mechanical strains in metallic tetragonal VO2. Both compressive and tensile biaxial strains lower the formation energy of , and the lowering of the formation energy is more pronounced under tensile strain. When six dopants, which possess different charge state and ionic radius, are introduced, the formation energy of increases, indicating that the dopants may suppress the formation in VO2. Strains lead to similar trends in the undoped case, i.e., strains reduce the formation energy in the doped VO2. Based on the results, we suggest that the difference in atomic relaxations of the two kinds of V–O bonds plays an important role in determining the formation energy of .
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.