钽酸钠掺杂诱导无铅(Bi0.5Na0.5) 0.94Ba0.06TiO3陶瓷的相结构调控及电性能增强

IF 2.4 4区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Juanjuan Wang , Pengkang Ma , Qizhen Chai , Fusheng Lai , Hongliang Du , Li Jin , Zhanhui Peng , Xiaolian Chao , Tianyi Yang
{"title":"钽酸钠掺杂诱导无铅(Bi0.5Na0.5) 0.94Ba0.06TiO3陶瓷的相结构调控及电性能增强","authors":"Juanjuan Wang ,&nbsp;Pengkang Ma ,&nbsp;Qizhen Chai ,&nbsp;Fusheng Lai ,&nbsp;Hongliang Du ,&nbsp;Li Jin ,&nbsp;Zhanhui Peng ,&nbsp;Xiaolian Chao ,&nbsp;Tianyi Yang","doi":"10.1016/j.cap.2025.01.013","DOIUrl":null,"url":null,"abstract":"<div><div>Ceramics with superior energy storage properties, serving as the dielectric layer of capacitors, are crucial for constructing high performance capacitors. In this study, we designed and characterized (1-<em>x</em>) (0.94Bi<sub>0.5</sub>Na<sub>0.5</sub>Ti0<sub>3</sub>-0.06BaTiO<sub>3</sub>)-<em>x</em>NaTaO<sub>3</sub> (BNBT-<em>x</em>NT) lead-free ceramics with enhanced energy storage capabilities. The incorporation of NaTaO<sub>3</sub> induced a transition from non-polar to polar relaxation phase and transformed nano-domains into nano-micro domains. Under an applied electric field of 250 kV/cm, the 0.92 BNBT-0.08NT ceramics exhibited significantly higher effective energy storage density <em>W</em><sub>rec</sub> (3.07 J/cm<sup>3</sup>) and energy storage efficiency <em>η</em> (68 %). Moreover, these ceramics demonstrated remarkable discharge energy density <em>W</em><sub>d</sub> (1.1 J/cm<sup>3</sup>), high power density <em>P</em><sub>D</sub> (75 MW/cm<sup>3</sup>), and fast charge and discharge speed <em>t</em><sub>0.9</sub> (258 ns). The exceptional stability in terms of energy storage performance suggests that BNBT-0.08NT ceramics hold great potential for pulse power applications.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"71 ","pages":"Pages 199-206"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sodium Tantalate doping-induced phase structure Regulation and electrical property enhancement in lead-free (Bi0.5Na0.5) 0.94Ba0.06TiO3 ceramics\",\"authors\":\"Juanjuan Wang ,&nbsp;Pengkang Ma ,&nbsp;Qizhen Chai ,&nbsp;Fusheng Lai ,&nbsp;Hongliang Du ,&nbsp;Li Jin ,&nbsp;Zhanhui Peng ,&nbsp;Xiaolian Chao ,&nbsp;Tianyi Yang\",\"doi\":\"10.1016/j.cap.2025.01.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ceramics with superior energy storage properties, serving as the dielectric layer of capacitors, are crucial for constructing high performance capacitors. In this study, we designed and characterized (1-<em>x</em>) (0.94Bi<sub>0.5</sub>Na<sub>0.5</sub>Ti0<sub>3</sub>-0.06BaTiO<sub>3</sub>)-<em>x</em>NaTaO<sub>3</sub> (BNBT-<em>x</em>NT) lead-free ceramics with enhanced energy storage capabilities. The incorporation of NaTaO<sub>3</sub> induced a transition from non-polar to polar relaxation phase and transformed nano-domains into nano-micro domains. Under an applied electric field of 250 kV/cm, the 0.92 BNBT-0.08NT ceramics exhibited significantly higher effective energy storage density <em>W</em><sub>rec</sub> (3.07 J/cm<sup>3</sup>) and energy storage efficiency <em>η</em> (68 %). Moreover, these ceramics demonstrated remarkable discharge energy density <em>W</em><sub>d</sub> (1.1 J/cm<sup>3</sup>), high power density <em>P</em><sub>D</sub> (75 MW/cm<sup>3</sup>), and fast charge and discharge speed <em>t</em><sub>0.9</sub> (258 ns). The exceptional stability in terms of energy storage performance suggests that BNBT-0.08NT ceramics hold great potential for pulse power applications.</div></div>\",\"PeriodicalId\":11037,\"journal\":{\"name\":\"Current Applied Physics\",\"volume\":\"71 \",\"pages\":\"Pages 199-206\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567173925000148\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173925000148","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

陶瓷具有优异的储能性能,作为电容器的介质层,是构建高性能电容器的关键。在这项研究中,我们设计并表征了具有增强储能能力的(1-x) (0.94Bi0.5Na0.5Ti03-0.06BaTiO3)-xNaTaO3 (BNBT-xNT)无铅陶瓷。naao3的掺入诱导了从非极性弛豫相到极性弛豫相的转变,并将纳米畴转化为纳米微畴。在250 kV/cm的电场作用下,0.92 BNBT-0.08NT陶瓷具有较高的有效储能密度Wrec (3.07 J/cm3)和储能效率η(68%)。此外,这些陶瓷具有显著的放电能量密度Wd (1.1 J/cm3),高功率密度PD (75 MW/cm3)和快速充放电速度t0.9 (258 ns)。在储能性能方面的优异稳定性表明BNBT-0.08NT陶瓷在脉冲功率应用方面具有巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sodium Tantalate doping-induced phase structure Regulation and electrical property enhancement in lead-free (Bi0.5Na0.5) 0.94Ba0.06TiO3 ceramics
Ceramics with superior energy storage properties, serving as the dielectric layer of capacitors, are crucial for constructing high performance capacitors. In this study, we designed and characterized (1-x) (0.94Bi0.5Na0.5Ti03-0.06BaTiO3)-xNaTaO3 (BNBT-xNT) lead-free ceramics with enhanced energy storage capabilities. The incorporation of NaTaO3 induced a transition from non-polar to polar relaxation phase and transformed nano-domains into nano-micro domains. Under an applied electric field of 250 kV/cm, the 0.92 BNBT-0.08NT ceramics exhibited significantly higher effective energy storage density Wrec (3.07 J/cm3) and energy storage efficiency η (68 %). Moreover, these ceramics demonstrated remarkable discharge energy density Wd (1.1 J/cm3), high power density PD (75 MW/cm3), and fast charge and discharge speed t0.9 (258 ns). The exceptional stability in terms of energy storage performance suggests that BNBT-0.08NT ceramics hold great potential for pulse power applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Applied Physics
Current Applied Physics 物理-材料科学:综合
CiteScore
4.80
自引率
0.00%
发文量
213
审稿时长
33 days
期刊介绍: Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications. Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques. Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals. Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review. The Journal is owned by the Korean Physical Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信