Current Applied Physics最新文献

筛选
英文 中文
La3+ doped at A-position improves the energy storage density of BNT-based lead-free energy storage ceramics 在a位掺杂La3+提高了bnt基无铅储能陶瓷的储能密度
IF 3.1 4区 物理与天体物理
Current Applied Physics Pub Date : 2025-09-23 DOI: 10.1016/j.cap.2025.09.023
Yanchun Hu, Ying Zhao, Wenke Ma, Xianwei Wang
{"title":"La3+ doped at A-position improves the energy storage density of BNT-based lead-free energy storage ceramics","authors":"Yanchun Hu,&nbsp;Ying Zhao,&nbsp;Wenke Ma,&nbsp;Xianwei Wang","doi":"10.1016/j.cap.2025.09.023","DOIUrl":"10.1016/j.cap.2025.09.023","url":null,"abstract":"<div><div>As an important energy storage device, dielectric capacitor plays an irreplaceable role in modern electronic and power systems because of its characteristics of fast charging, high output, long life and high temperature stability. Among various dielectric materials, Bi<sub>0.5</sub>Na<sub>0.5</sub>TiO<sub>3</sub>-based energy storage ceramics with high saturation polarization are limited due to high conductivity and high residual polarization. In this paper, Bi<sub>(0.5-x)</sub>Na<sub>0.5</sub>La<sub>x</sub>TiO<sub>3</sub> (denoted as BNL<sub>x</sub>T) ceramic was prepared by solid state reaction method. By introducing La<sup>3+</sup> at A position, the Bi<sub>0.5</sub>Na<sub>0.5</sub>TiO<sub>3</sub>-based lead-free ceramic was modified to improve its relaxation characteristics and breakdown strength, so as to achieve the purpose of increasing energy storage density and energy storage efficiency. The introduction of La<sup>3+</sup> at A position creates a wide temperature platform between dielectric anomalies, indicating that La<sup>3+</sup> can effectively induce the relaxation characteristics of BNT ceramics. The breakdown strength is increased from 136 kV/cm of pure BNT ceramics to 198 kV/cm of Bi<sub>0.455</sub>Na<sub>0.5</sub>La<sub>0.045</sub>TiO<sub>3</sub> ceramics, which is 1.46 times higher than before. The residual polarization decreased from 49.24 μC/cm<sup>2</sup> to 35.29 μC/cm<sup>2</sup>, and the effective energy storage density increased from 0.80J/cm<sup>3</sup> to 2.07J/cm<sup>3</sup>, an increase of 2.58 times than before. In addition, the energy storage efficiency achieved a transformation of 10.39 %–26.87 %, which is 2.59 times higher than pure BNT. The results show that La<sup>3+</sup> can effectively induce the relaxation characteristics of BNT ceramics, improve the effective energy storage density and energy storage efficiency, and is a good dopant to optimize the energy storage performance of BNT-based ceramics, providing feasibility for optimizing the energy storage performance of BNT-based ceramics.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"80 ","pages":"Pages 204-212"},"PeriodicalIF":3.1,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145154824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative morphological analysis of electrospun PAN/PVDF nanofibers for waterproof breathable membrane applications 静电纺PAN/PVDF纳米纤维防水透气膜的形态对比分析
IF 3.1 4区 物理与天体物理
Current Applied Physics Pub Date : 2025-09-22 DOI: 10.1016/j.cap.2025.09.017
Wahyu Solafide Sipahutar , Rizky Aflaha , Alex Triputra Lumban Tobing , Tarmizi Taher , Kuwat Triyana , Hutomo Suryo Wasisto , Aldes Lesbani , Aditya Rianjanu
{"title":"Comparative morphological analysis of electrospun PAN/PVDF nanofibers for waterproof breathable membrane applications","authors":"Wahyu Solafide Sipahutar ,&nbsp;Rizky Aflaha ,&nbsp;Alex Triputra Lumban Tobing ,&nbsp;Tarmizi Taher ,&nbsp;Kuwat Triyana ,&nbsp;Hutomo Suryo Wasisto ,&nbsp;Aldes Lesbani ,&nbsp;Aditya Rianjanu","doi":"10.1016/j.cap.2025.09.017","DOIUrl":"10.1016/j.cap.2025.09.017","url":null,"abstract":"<div><div>Waterproof and breathable membranes are critical for protective textiles, filtration, and wearable applications. However, balancing water resistance with vapor permeability remains challenging. This study investigates the morphological effects of electrospun polyacrylonitrile/polyvinylidene fluoride (PAN/PVDF) nanofiber membranes on their waterproofness, breathability, and mechanical integrity. Varying polymer concentration can control fiber diameter (224–1379 nm) and bead formation, influencing membrane properties. Increasing fiber diameter enhances mechanical strength, with Young's modulus rising from 22.5 MPa to 34.1 MPa. All fabricated membranes exhibit excellent waterproofness, while the larger, bead-free fibers possess improved water vapor transmission and slightly reduced air permeability. FTIR analysis confirms consistent chemical composition across samples. These findings demonstrate that nanofiber morphology can be tailored to optimize performance, offering valuable insights for the development of multifunctional membranes for environmental, industrial, and wearable use.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"80 ","pages":"Pages 224-233"},"PeriodicalIF":3.1,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145154825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifunctional optoelectronic element based on n-InSe layered semiconductor doped with rare-earth elements 基于掺稀土元素n-InSe层状半导体的多功能光电元件
IF 3.1 4区 物理与天体物理
Current Applied Physics Pub Date : 2025-09-22 DOI: 10.1016/j.cap.2025.09.019
T.G. Naghiyev , R.F. Babayeva , A. Sh Abdinov
{"title":"Multifunctional optoelectronic element based on n-InSe layered semiconductor doped with rare-earth elements","authors":"T.G. Naghiyev ,&nbsp;R.F. Babayeva ,&nbsp;A. Sh Abdinov","doi":"10.1016/j.cap.2025.09.019","DOIUrl":"10.1016/j.cap.2025.09.019","url":null,"abstract":"<div><div>The switching effect, the “phototrigger effect,” and electroluminescence were experimentally investigated in both pure and rare-earth (Ho and Er) doped n-InSe crystals. It was established that, under certain conditions, all three effects can be observed simultaneously in the same sample for both groups of crystals. For pure crystals, the parameters of these effects depend on the initial dark resistivity measured at 77 K. In contrast, for rare earth element (REE) doped crystals, the parameters do not depend on the chemical nature of the dopant but vary non-monotonically with its concentration (N<sub>REE</sub>). The most stable characteristics were observed in pure crystals with the lowest initial specific dark resistivity, and in doped crystals with 10<sup>−2</sup>&lt;<em>N</em><sub><em>REE</em></sub>&lt;10<sup>−1</sup> at.%. The underlying physical mechanisms of these results are qualitatively discussed, and the potential applications of such effects in optoelectronic devices are highlighted.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"80 ","pages":"Pages 176-181"},"PeriodicalIF":3.1,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145154827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymmetric-gate Mach–Zehnder interferometry in graphene: Multi-path conductance oscillations and visibility characteristics 石墨烯中的非对称门Mach-Zehnder干涉测量:多径电导振荡和可见性特性
IF 3.1 4区 物理与天体物理
Current Applied Physics Pub Date : 2025-09-22 DOI: 10.1016/j.cap.2025.09.016
Taegeun Song , Nojoon Myoung
{"title":"Asymmetric-gate Mach–Zehnder interferometry in graphene: Multi-path conductance oscillations and visibility characteristics","authors":"Taegeun Song ,&nbsp;Nojoon Myoung","doi":"10.1016/j.cap.2025.09.016","DOIUrl":"10.1016/j.cap.2025.09.016","url":null,"abstract":"<div><div>Graphene provides an excellent platform for investigating electron quantum interference due to its outstanding coherent properties. In the quantum Hall regime, Mach–Zehnder (MZ) electronic interferometers are realized using p–n junctions in graphene, where electron interference is highly protected against decoherence. In this work, we present a phenomenological framework for graphene-based MZ interferometry with asymmetric p–n junction configurations. We show that the enclosed interferometer area can be tuned by asymmetric gate potentials, and additional MZ pathways emerge in higher-filling-factor scenarios, e.g., <span><math><mrow><mo>(</mo><msub><mi>ν</mi><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mi>ν</mi><mrow><mi>p</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mo>−</mo><mn>3</mn><mo>,</mo><mo>+</mo><mn>3</mn><mo>)</mo></mrow></math></span>. The resulting complicated beat oscillations in asymmetric-gate MZ interference are efficiently analyzed using a machine-learning-based Fourier transform, which yields improved peak-to-background ratios compared to conventional signal-processing techniques. Furthermore, we examine the impact of the asymmetric gate on the interference visibility, finding that interference visibility is enhanced under symmetric gate conditions.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"80 ","pages":"Pages 341-345"},"PeriodicalIF":3.1,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145332806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tuning growth parameter for the controlled synthesis of 2D WS2 二维WS2可控合成的生长参数调整
IF 3.1 4区 物理与天体物理
Current Applied Physics Pub Date : 2025-09-22 DOI: 10.1016/j.cap.2025.09.018
Nishtha Sagta, Ajay Kumar Mishra
{"title":"Tuning growth parameter for the controlled synthesis of 2D WS2","authors":"Nishtha Sagta,&nbsp;Ajay Kumar Mishra","doi":"10.1016/j.cap.2025.09.018","DOIUrl":"10.1016/j.cap.2025.09.018","url":null,"abstract":"<div><div>The atmospheric pressure chemical vapor deposition (APCVD) synthesis of high-quality 2D WS<sub>2</sub> (tungsten disulfide) critically depends on the precise timing of sulfur vapor introduction. This study investigates the role of sulfur-rich environment and growth time on the surface morphology of 2D WS<sub>2</sub> films on the silicon substrate. Three different varying sets of parameters, designated as SP<sub>1</sub>, SP<sub>2</sub>, and SP<sub>3</sub>, were examined to optimize the time of sulfur vapor introduction. This process enabled the formation of large mono- and bi-layer triangular islands, with flake sizes ranging from ∼70 to 164 μm, as well as long few-layer structures. The atomically thin WS<sub>2</sub> exhibited strong photoluminescence (PL) at ∼1.93 eV, with a ∼70-fold enhancement and a full-width at half maximum (FWHM) of ∼12 nm. The optimized SP<sub>3</sub> parameters were applied using the sapphire substrate, and the results were consistent. Thus, this study highlights the crucial role of sulfur vapor synchronization in WS<sub>2</sub> synthesis, enabling control over their morphology, growth and size.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"80 ","pages":"Pages 182-193"},"PeriodicalIF":3.1,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145154828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intrinsic chirality in two-dimensional dimer photonic crystals enabled by cross-polarization-suppressed bound states in the continuum 连续介质中交叉极化抑制束缚态使二维二聚体光子晶体的本征手性成为可能
IF 3.1 4区 物理与天体物理
Current Applied Physics Pub Date : 2025-09-19 DOI: 10.1016/j.cap.2025.09.015
Kyungnam Kang , Youngjun Chung , Gyuin Baek , Myungjae Lee
{"title":"Intrinsic chirality in two-dimensional dimer photonic crystals enabled by cross-polarization-suppressed bound states in the continuum","authors":"Kyungnam Kang ,&nbsp;Youngjun Chung ,&nbsp;Gyuin Baek ,&nbsp;Myungjae Lee","doi":"10.1016/j.cap.2025.09.015","DOIUrl":"10.1016/j.cap.2025.09.015","url":null,"abstract":"<div><div>Breaking in-plane and out-of-plane symmetries in photonic crystals is key to achieving intrinsic chirality, enabling chiroptical responses and chiral emission. Bound states in the continuum enhance quality factors and light-matter interactions, but achieving both high quality factor and true intrinsic chirality is challenging, as three-dimensional chiral structures are complex to fabricate and conventional two-dimensional designs often rely on polarization conversion. Here, we demonstrate an intrinsically chiral two-dimensional planar photonic crystal slab based on a quasi-bound state in the continuum that breaks only in-plane symmetry using nanohole dimers. The proposed slab selectively couples to circular polarization regardless of incident direction without out-of-plane perturbations. Co-polarized circular dichroism and the degree of circular polarization of chiral emission reach −0.96 and 0.73, respectively, with a high quality factor of 4892. Our design is compatible with standard top-down lithography and offers potential for chiral lasing and sensing.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"80 ","pages":"Pages 169-175"},"PeriodicalIF":3.1,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145118151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystal-liquid interfacial free energy and thermophysical properties of refractory Mo, Nb and Ta pure metal elements 难熔Mo, Nb和Ta纯金属元素的晶液界面自由能和热物理性质
IF 3.1 4区 物理与天体物理
Current Applied Physics Pub Date : 2025-09-17 DOI: 10.1016/j.cap.2025.09.013
Yong Chan Cho , Shraddha Ganorkar , Lei Wang , Sangho Jeon , John Jonghyun Lee , Yun-Hee Lee , Geun Woo Lee
{"title":"Crystal-liquid interfacial free energy and thermophysical properties of refractory Mo, Nb and Ta pure metal elements","authors":"Yong Chan Cho ,&nbsp;Shraddha Ganorkar ,&nbsp;Lei Wang ,&nbsp;Sangho Jeon ,&nbsp;John Jonghyun Lee ,&nbsp;Yun-Hee Lee ,&nbsp;Geun Woo Lee","doi":"10.1016/j.cap.2025.09.013","DOIUrl":"10.1016/j.cap.2025.09.013","url":null,"abstract":"<div><div>The crystal-liquid interfacial free energy (IFE) plays a crucial role in understanding crystal nucleation and growth phenomena across various scientific research fields. Measuring the IFE is very challenging under high-temperature environments, due to the volatility, reactivity, and contamination of molten metals that can result in ambiguous understanding of nucleation. It has been known that container-free techniques can overcome the experimental difficulties. In this study, we measure thermophysical parameters of the refractory metallic liquids (i.e., Nb, Mo, and Ta) and calculate their IFE. These results will be useful for understanding the fundamentals of nucleation and glass formation under high-temperature environment, as well as for designing new materials.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"80 ","pages":"Pages 151-157"},"PeriodicalIF":3.1,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145105111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulations of parallel electrode glow discharge and comparison with experimental results 平行电极辉光放电的模拟及与实验结果的比较
IF 3.1 4区 物理与天体物理
Current Applied Physics Pub Date : 2025-09-16 DOI: 10.1016/j.cap.2025.09.012
Mubashair Imran , Majid Khan , A. Qayyum , K. Ahmad , S. Ahmad , M. Kamran
{"title":"Simulations of parallel electrode glow discharge and comparison with experimental results","authors":"Mubashair Imran ,&nbsp;Majid Khan ,&nbsp;A. Qayyum ,&nbsp;K. Ahmad ,&nbsp;S. Ahmad ,&nbsp;M. Kamran","doi":"10.1016/j.cap.2025.09.012","DOIUrl":"10.1016/j.cap.2025.09.012","url":null,"abstract":"<div><div>This paper uses COMSOL Multiphysics simulations and experiments to provide insight into the plasma features of a parallel electrode DC glow discharge system. Nitrogen gas has been selected for plasma discharge due to its widespread use in plasma nitriding, which enhances the tribological properties of materials. The study looks at how DC power changes the important plasma parameters, like the electron temperature and the electron number density, while keeping the gas pressure the same. Additionally, the effect of varying gas-filled pressure was analyzed with fixed DC power. Experimental validation is carried out in a cylindrical shaped vacuum chamber with the same geometric configuration and input conditions. The comparison between simulated results and experimental outcomes shows a similar trend, although the magnitudes of simulated results are a little bit higher. This variation may be due to differences between theoretical modeling and actual plasma behavior. Based on these observations, the discharge system has been optimized for precise pressure and power conditions to improve its effectiveness in plasma nitriding applications. The findings contribute to better control and efficiency in plasma-based surface treatment processes.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"80 ","pages":"Pages 134-144"},"PeriodicalIF":3.1,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145105110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible screen-printed graphene oxide-based biosensor for sweat sodium detection 用于汗液钠检测的柔性丝网印刷氧化石墨烯生物传感器
IF 3.1 4区 物理与天体物理
Current Applied Physics Pub Date : 2025-09-15 DOI: 10.1016/j.cap.2025.09.010
L. Marini , P. Chithra Lekha , Roop L. Mahajan , T. Devasena
{"title":"Flexible screen-printed graphene oxide-based biosensor for sweat sodium detection","authors":"L. Marini ,&nbsp;P. Chithra Lekha ,&nbsp;Roop L. Mahajan ,&nbsp;T. Devasena","doi":"10.1016/j.cap.2025.09.010","DOIUrl":"10.1016/j.cap.2025.09.010","url":null,"abstract":"<div><div>Sweat contains valuable biomarkers indicative of physiological health conditions such as electrolyte imbalance, stress, and disease, enabling continuous, non-invasive monitoring through miniaturized wearable electrochemical biosensors. Here, a flexible, cost-effective electrochemical sweat Na<sup>+</sup> ion sensor is fabricated using a screen-printing method on a flexible polyethylene terephthalate (PET) substrate. The sensor incorporates a low-cost Ion-Selective Layer (ISL) and graphene oxide (GO) enhancing sensitivity and electrochemical performance across a broad range of Na<sup>+</sup> ions. The sensor exhibits a high sensitivity of 1.213 mA/mM.cm<sup>2</sup>, low limit detection of 14.49 mM, and good stability. Real-time sweat analysis demonstrated Na<sup>+</sup> ion levels of 19 mM in the morning and 23 mM in the evening aligning with the analytical range of Na<sup>+</sup> ion concentration in sweat. This work addresses challenges in precision and individual variability in Na<sup>+</sup> ion concentration highlighting the potential of scalable, affordable sensors in wearables technology for personalized health monitoring.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"80 ","pages":"Pages 145-150"},"PeriodicalIF":3.1,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145105179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autonomous sampling of α-Fe2O3 hollow microspheres with carbon-stabilized defects: calcination-tuned humidity sensor performance 具有碳稳定缺陷的α-Fe2O3空心微球的自主采样:煅烧调谐湿度传感器性能
IF 3.1 4区 物理与天体物理
Current Applied Physics Pub Date : 2025-09-15 DOI: 10.1016/j.cap.2025.09.011
Islam Gomaa , Raiedhah A. Alsaiari , Mohamed Morsy , Moustafa A. Rizk
{"title":"Autonomous sampling of α-Fe2O3 hollow microspheres with carbon-stabilized defects: calcination-tuned humidity sensor performance","authors":"Islam Gomaa ,&nbsp;Raiedhah A. Alsaiari ,&nbsp;Mohamed Morsy ,&nbsp;Moustafa A. Rizk","doi":"10.1016/j.cap.2025.09.011","DOIUrl":"10.1016/j.cap.2025.09.011","url":null,"abstract":"<div><div>Defect control and surface chemistry remain critical bottlenecks in advancing metal-oxide humidity sensors. We report a scalable mechano-thermal strategy for fabricating carbon-doped α-Fe<sub>2</sub>O<sub>3</sub> hollow microspheres, whose intrinsic voids act as autonomous sampling chambers. Systematic calcination (500–900 °C) enables precise tuning of crystallite size (38.2–87.6 nm), lattice strain (0.10–0.77 %), dislocation density (1.4 × 10<sup>−4</sup>–3.07 × 10<sup>−3</sup> nm<sup>−2</sup>), and carbon content (21 → 14 wt%), thereby modulating carbon–oxygen moieties that govern water adsorption and proton-hopping conduction. Spectroscopic analyses reveal a stable Fe<sup>2+</sup>/Fe<sup>3+</sup> surface ratio and C–Fe–O interactions, generating hydrophilic adsorption sites and activating a dual-regime mechanism: ionic conduction dominates up to 75 % RH, while Grotthuss proton transport prevails at higher humidity. Non-monotonic phase evolution with transient Fe<sub>3</sub>O<sub>4</sub> nucleation at 800 °C highlights the role of dynamic defect activation. The Fe-500 device delivers superior performance, with a sensitivity of 0.75 kΩ/% RH, response time of 40 s, and recovery time of 85 s, surpassing benchmark hematite-based sensors.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"80 ","pages":"Pages 158-168"},"PeriodicalIF":3.1,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145105112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信