{"title":"Impact of Ni on the structure and electrochemical behavior of δ-MnO2 cathodes in zinc ion batteries","authors":"Mohamad Afiefudin , Asep Ridwan Setiawan , Fadli Rohman , Veinardi Suendo , Achmad Prayogi","doi":"10.1016/j.cap.2025.01.014","DOIUrl":"10.1016/j.cap.2025.01.014","url":null,"abstract":"<div><div>The utilization of MnO<sub>2</sub> as a cathode material in energy storage systems such as rechargeable aqueous zinc-ion batteries shows great promise for development due to its high safety, environmental friendliness, and cost-effectiveness. Nevertheless, the manganese dioxide cathode suffers from a dissolution-redeposition reaction, leading to poor structural stability. To address these issues, this study focuses on modifying the structural properties of <em>δ-</em>MnO<sub>2</sub> to overcome its drawbacks, such as low capacity and cycling stability. By synthesizing Ni-<em>δ-</em>MnO<sub>2</sub> with enhanced crystalline structure, expanded lattice spacing, improved conductivity, rapid diffusion of Zn<sup>2+</sup> ions, and electron transfer are enabled. This results in a notable high capacity of 350 mA h g<sup>−1</sup> at 50 mA g<sup>−1</sup>, accompanied by enduring cycle stability, with the capacity maintained over 200 cycles. The morphology evolution and structure of Ni- <em>δ-</em>MnO<sub>2</sub> are believed to enhance ion transportation, rendering it a promising cathode material for applications in aqueous zinc-ion batteries.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"72 ","pages":"Pages 18-27"},"PeriodicalIF":2.4,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143349577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Irfan Yahaya , Ahmad Nurhelmy Adam , Ahmad Adnan Abu Bakar , Shahino Mah Abdullah , Nizam Tamchek , Ahmad F. Alforidi , Ahmed Alahmadi , Mohd Ifwat Mohd Ghazali
{"title":"Design and fabrication of multi-band SRR sensors using 3D printing for liquid characterization","authors":"Irfan Yahaya , Ahmad Nurhelmy Adam , Ahmad Adnan Abu Bakar , Shahino Mah Abdullah , Nizam Tamchek , Ahmad F. Alforidi , Ahmed Alahmadi , Mohd Ifwat Mohd Ghazali","doi":"10.1016/j.cap.2025.01.018","DOIUrl":"10.1016/j.cap.2025.01.018","url":null,"abstract":"<div><div>A microstrip line split ring resonator (SRR) sensor is introduced for liquid profiling. The sensor features a microstrip transmission line with two identical SRRs, detecting differential permittivity by loading liquid samples onto the SRRs.3D-printing stereolithography technology with high temperature resin is used to build the sensors. The printed sensor undergoes metallization process by depositing titanium and copper layer, followed by copper electroplating. Different Ti Cu sputtering time was studied to determine optimum parameters for sensor application. It only necessitates a minimal sample volume for detection as any changes in the sample loading induces a change in the resonance frequency of the SRR. The sensors exhibited strong performance, distinguishing between chemicals like methanol, IPA, and silicone oil based on resonance frequency shifts, with the 3.5 GHz sensor achieving the highest sensitivity (1.09 %). The utilization of additive manufacturing for producing 3D-printed sensors could meet the demand for quick and cost-effective microwave sensors.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"72 ","pages":"Pages 93-104"},"PeriodicalIF":2.4,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143453962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sustainable synthesis of magnetic nanoparticles: Biological applications of Cedrus deodara extract","authors":"Shilpa Kumari , Mohit Sahni , Soumya Pandit , Neha Verma , Firdaus Mohamad Hamzah , Kuldeep Sharma , Kanu Priya","doi":"10.1016/j.cap.2025.01.015","DOIUrl":"10.1016/j.cap.2025.01.015","url":null,"abstract":"<div><div>This research article explains a green synthesis of α-Fe₂O₃ nanoparticles (NPs) utilizing <em>Cedrus deodara</em> wood extract. The wood extract of this medicinal plant was used to synthesize the α-Fe₂O₃ NPs and utilized in various applications including biological applications on Osteosarcoma (MG63) and Lung cancer (A549). Along with this, we have also estimated its anti-bacterial properties on <em>P. aeruginosa</em> bacterial strain. The α-Fe₂O₃ NPs showed high antioxidant activity with DPPH and FRAP values of 86.05 % and 86.04 %, outperforming the antioxidant capacity of <em>Cedrus deodara</em> extract alone (79.16 % and 71.09 %). In cytotoxicity tests, they effectively inhibited osteosarcoma (MG63) and lung carcinoma (A549) cell lines, showing greater cytotoxicity against MG63 cells (IC<sub>50</sub> of 19.86 μg/mL) than A549 cells (IC<sub>50</sub> of 24.66 μg/mL) after 24 h. They also displayed strong antibacterial activity. This work presents a novel biogenic α-Fe₂O₃ nanoparticle synthesized from <em>Cedrus deodara</em> extract, exhibiting exceptional antioxidant, cytotoxic, and antibacterial activities.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"72 ","pages":"Pages 1-10"},"PeriodicalIF":2.4,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143093097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juanjuan Wang , Pengkang Ma , Qizhen Chai , Fusheng Lai , Hongliang Du , Li Jin , Zhanhui Peng , Xiaolian Chao , Tianyi Yang
{"title":"Sodium Tantalate doping-induced phase structure Regulation and electrical property enhancement in lead-free (Bi0.5Na0.5) 0.94Ba0.06TiO3 ceramics","authors":"Juanjuan Wang , Pengkang Ma , Qizhen Chai , Fusheng Lai , Hongliang Du , Li Jin , Zhanhui Peng , Xiaolian Chao , Tianyi Yang","doi":"10.1016/j.cap.2025.01.013","DOIUrl":"10.1016/j.cap.2025.01.013","url":null,"abstract":"<div><div>Ceramics with superior energy storage properties, serving as the dielectric layer of capacitors, are crucial for constructing high performance capacitors. In this study, we designed and characterized (1-<em>x</em>) (0.94Bi<sub>0.5</sub>Na<sub>0.5</sub>Ti0<sub>3</sub>-0.06BaTiO<sub>3</sub>)-<em>x</em>NaTaO<sub>3</sub> (BNBT-<em>x</em>NT) lead-free ceramics with enhanced energy storage capabilities. The incorporation of NaTaO<sub>3</sub> induced a transition from non-polar to polar relaxation phase and transformed nano-domains into nano-micro domains. Under an applied electric field of 250 kV/cm, the 0.92 BNBT-0.08NT ceramics exhibited significantly higher effective energy storage density <em>W</em><sub>rec</sub> (3.07 J/cm<sup>3</sup>) and energy storage efficiency <em>η</em> (68 %). Moreover, these ceramics demonstrated remarkable discharge energy density <em>W</em><sub>d</sub> (1.1 J/cm<sup>3</sup>), high power density <em>P</em><sub>D</sub> (75 MW/cm<sup>3</sup>), and fast charge and discharge speed <em>t</em><sub>0.9</sub> (258 ns). The exceptional stability in terms of energy storage performance suggests that BNBT-0.08NT ceramics hold great potential for pulse power applications.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"71 ","pages":"Pages 199-206"},"PeriodicalIF":2.4,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143169210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mengmeng Chu , Junhan Bae , Maha Nur Aida , Hasnain Yousuf , Jaljalalul Abedin Jony , Rafi Ur Rahman , Muhammad Quddamah Khokhar , Sangheon Park , Junsin Yi
{"title":"Thermal curing of interface defects at a-si:H/c-Si in heterojunction with intrinsic thin layer (HIT) solar cell processing","authors":"Mengmeng Chu , Junhan Bae , Maha Nur Aida , Hasnain Yousuf , Jaljalalul Abedin Jony , Rafi Ur Rahman , Muhammad Quddamah Khokhar , Sangheon Park , Junsin Yi","doi":"10.1016/j.cap.2025.01.012","DOIUrl":"10.1016/j.cap.2025.01.012","url":null,"abstract":"<div><div>This study explores the use of thermal treatment to recover defects at the a-Si:H/c-Si interface caused by transparent conductive oxide (TCO) deposition, improving passivation by diminishing interface defect density (D<sub>it</sub>). A 200 °C thermal treatment enhanced HIT solar cell performance, increasing the effective bulk lifetime to 1.1 ms at a minority carrier density of 1.0 × 10<sup>1</sup>⁵ cm⁻³. Key performance metrics improved, including J<sub>sc</sub> (from 38.70 to 38.88 mA/cm<sup>2</sup>), V<sub>oc</sub> (from 727 to 730 mV), FF (from 75.50 % to 77.82 %), and efficiency (from 21.27 % to 22.09 %). AFORS-HET simulations showed that D<sub>it</sub> must be less than 1 × 10<sup>11</sup> cm⁻<sup>2</sup> eV⁻<sup>1</sup> for optimal efficiency. The best solar cell performance, achieved in simulations, included J<sub>sc</sub> of 37.71 mA/cm<sup>2</sup>, V<sub>oc</sub> of 716.8 mV, FF of 83.50 %, and efficiency of 22.57 % at D<sub>it</sub> of 1 × 10⁹ cm⁻<sup>2</sup> eV⁻<sup>1</sup>. This combined approach offers insights into defect management for solar cell technology.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"71 ","pages":"Pages 184-189"},"PeriodicalIF":2.4,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143169208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aliyu Sani Abdulkarim , Monika Srivastava , Thejakhrielie Ngulezhu , Diksha Singh , Karol Strzałkowski , Ram Chandra Singh , M.Z.A. Yahya , S.N.F. Yusuf , Markus Diantoro
{"title":"An overview of tin based perovskite solar cells: Stability and efficiency","authors":"Aliyu Sani Abdulkarim , Monika Srivastava , Thejakhrielie Ngulezhu , Diksha Singh , Karol Strzałkowski , Ram Chandra Singh , M.Z.A. Yahya , S.N.F. Yusuf , Markus Diantoro","doi":"10.1016/j.cap.2025.01.010","DOIUrl":"10.1016/j.cap.2025.01.010","url":null,"abstract":"<div><div>Perovskite solar cells (PSCs) are a category of third-generation solar cells technology, which gained significant attention due to their cost-effectiveness and electricity generation capabilities. However, there are concerns regarding the use of lead (Pb) in traditional PSCs, particularly its potential impact on the environment and human health. Consequently, the advancement of lead-free perovskite solar cells is of utmost importance to safeguard both the environment and human well-being. Tin-based perovskites present a promising alternative to lead-based PSCs. Tin (Sn) has shown promising optoelectronic properties and can be used as a substitute for lead. However, there are obstacles associated with the weak stability of Sn<sup>2+</sup> ions that must be overcome in order to develop tin-based PSCs that are both extremely stable and efficient. This review specifically examines the progress made within the field of lead free tin-based perovskite solar cells, with a particular focus on stability and efficiency. The discussion delves into the effect of various cations and their compositions on the devices' stability. It is important to mention that devices based on tin halide perovskites have achieved an unexpectedly high level of efficiency in a short amount of time. Moreover, this review provides a summary of the strategies that have been employed to enhance, and improve the stability and the overall efficiency of tin-based PSCs.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"71 ","pages":"Pages 190-198"},"PeriodicalIF":2.4,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143169209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seungchul Choi , In Hak Lee , Yeong Gwang Khim , Jung Yun Kee , Tae Gyu Rhee , Hyo Won Seoh , Hyuk Jin Kim , Jun Woo Choi , Young Jun Chang
{"title":"Magnetic properties of van der Waals ferromagnet Fe3GeTe2 nanosheets grown by flux-assisted growth","authors":"Seungchul Choi , In Hak Lee , Yeong Gwang Khim , Jung Yun Kee , Tae Gyu Rhee , Hyo Won Seoh , Hyuk Jin Kim , Jun Woo Choi , Young Jun Chang","doi":"10.1016/j.cap.2025.01.009","DOIUrl":"10.1016/j.cap.2025.01.009","url":null,"abstract":"<div><div>Among two-dimensional (2D) van der Waals (vdW) materials, Fe<sub>3</sub>GeTe<sub>2</sub> (FGT), a 2D vdW ferromagnetic material, has gained significant interest due to its high Curie temperature and perpendicular magnetic anisotropy. Despite the difficulties in fabricating high-quality crystals, the flux-assisted growth (FAG) method has recently emerged as a promising technique for synthesizing 2D vdW materials. In this study, we employed the FAG method to fabricate crystalline FGT nanosheets under varied growth parameters. Magneto-optical Kerr effect (MOKE) measurements revealed that the FGT nanosheets exhibit perpendicular magnetic anisotropy with a Curie temperature of 222 K. Additionally, the MOKE data indicate the presence of exchange bias phenomena, likely due to the FeO phase associated with oxidized FGT surface. These findings enhance our understanding of the fundamental physics of FGT nanosheets and contribute to the advancement of diverse 2D magnetic device applications.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"71 ","pages":"Pages 169-174"},"PeriodicalIF":2.4,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143169213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact of dopants and strains on the oxygen vacancy formation in VO2","authors":"Inseo Kim, Han-Youl Ryu, Minseok Choi","doi":"10.1016/j.cap.2025.01.001","DOIUrl":"10.1016/j.cap.2025.01.001","url":null,"abstract":"<div><div>We perform first-principles calculations to examine the relationship of the oxygen vacancy (<span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>O</mi></mrow></msub></math></span>) formation with dopants and mechanical strains in metallic tetragonal VO<sub>2</sub>. Both compressive and tensile biaxial strains lower the formation energy of <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>O</mi></mrow></msub></math></span>, and the lowering of the formation energy is more pronounced under tensile strain. When six dopants, which possess different charge state and ionic radius, are introduced, the formation energy of <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>O</mi></mrow></msub></math></span> increases, indicating that the dopants may suppress the <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>O</mi></mrow></msub></math></span> formation in VO<sub>2</sub>. Strains lead to similar trends in the undoped case, i.e., strains reduce the <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>O</mi></mrow></msub></math></span> formation energy in the doped VO<sub>2</sub>. Based on the results, we suggest that the difference in atomic relaxations of the two kinds of V–O bonds plays an important role in determining the formation energy of <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>O</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"71 ","pages":"Pages 125-129"},"PeriodicalIF":2.4,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143170837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tailoring the electrochemical performance of the polymer electrolyte using Na2H20B4O17 for magnesium sulfur battery applications","authors":"M.A. Attallah, E. Sheha","doi":"10.1016/j.cap.2025.01.006","DOIUrl":"10.1016/j.cap.2025.01.006","url":null,"abstract":"<div><div>Due to the construction's low cost, ecological appeal, friendliness, great theoretical density, and reliability, the Mg-S battery is an encouraging substitute for the pillar lithium battery. Nevertheless, self-discharge, the delayed conversion reaction pathway, and the absence of readily compatible electrolytes continue to restrict its beneficial uses. In this work, polymer electrolyte used 0.7 wt% polyvinyl alcohol (PVA), (0.3-x)<sub>wt.%</sub>(Mg(CF<sub>3</sub>SO<sub>3</sub>)<sub>2</sub>) and <sub>xwt.%</sub>Na<sub>2</sub>H<sub>20</sub>B<sub>4</sub>O<sub>17</sub> (x = 0,0.01,0.02,0.03,0.04,0.05) (PE<sub>x</sub>) have been prepared and characterized for usage in Mg-S batteries. Integrating the PVA_<sub>(0.3-x)wt.%</sub> (Mg(CF<sub>3</sub>SO<sub>3</sub>)<sub>2</sub>)_ <sub>0.04</sub>Na<sub>2</sub>H<sub>20</sub>B<sub>4</sub>O<sub>17</sub> (X<sub>4</sub>) with tetraethylene glycol dimethyl ether (G<sub>4</sub>) demonstrates effective Mg plating and stripping behavior, good anodic stability (versus Mg/Mg <sup>2+</sup>), and a significant ionic conductivity (8.09 <span><math><mrow><mo>×</mo></mrow></math></span> 10<sup>−7</sup> S cm<sup>−1</sup> at 323 K). The Mg-S is assembled using an X<sub>4</sub>_G<sub>4</sub> electrolyte and delivers a reversible capacity of 100 mAh g<sup>−1</sup> after 30 cycles.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"71 ","pages":"Pages 175-183"},"PeriodicalIF":2.4,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143169211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structural and luminescent properties of water-quenched Eu3+-doped HfW2O8 with negative thermal expansion","authors":"K.C. Lee, J.H. Han, S.W. Wi, Y.S. Lee","doi":"10.1016/j.cap.2025.01.005","DOIUrl":"10.1016/j.cap.2025.01.005","url":null,"abstract":"<div><div>This study represents the first attempt to correlate the photoluminescence properties of Eu<sup>3+</sup>-doped HfW<sub>2</sub>O<sub>8</sub> (Hf<sub>1-x</sub>Eu<sub>x</sub>W<sub>2</sub>O<sub>8</sub>) with their novel thermal structural changes, i.e., negative thermal expansion (NTE). We synthesized Hf<sub>1-x</sub>Eu<sub>x</sub>W<sub>2</sub>O<sub>8</sub> (x = 0, 0.01, 0.03, 0.05, 0.07, 0.09, 0.12, and 0.15) via a fast solid state reaction method with water quenching. Temperature dependent X-ray diffraction patterns exhibited the phase transition from α-phase (<em>P2</em><sub><em>1</em></sub><em>3</em>, cubic) to β-phase (<em>Pa-3</em>, cubic) as the temperature increased from room temperature to 200 °C, along with highly linear contraction of lattice constants. The thermal expansion coefficient and the volume thermal expansion coefficient were determined as approximately −1.1 × 10<sup>−5</sup> and −3.4 × 10<sup>−5</sup>, respectively. In the temperature dependent photoluminescence measurement, together with the thermal quenching behavior, we found that the asymmetric ratios decreased in accord with the structural change to higher symmetry. These findings reveal that the luminescent properties of Eu<sup>3+</sup> are closely related to the structural properties in NTE HfW<sub>2</sub>O<sub>8</sub>.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"71 ","pages":"Pages 130-137"},"PeriodicalIF":2.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143170838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}