{"title":"热退火导致β-Zn4Sb3薄膜热电功率因数成倍提高","authors":"Avinash Kumar , Nirmal Manyani , Janpreet Singh , S.K. Tripathi","doi":"10.1016/j.cap.2025.09.014","DOIUrl":null,"url":null,"abstract":"<div><div>In the present work, thermoelectric parameters electrical conductivity, Seebeck coefficient and power factor of β-Zn<sub>4</sub>Sb<sub>3</sub> thin films at room temperature (303 K) were enhanced by 102.56 %, 110.90 % and 712.76 % respectively using post-deposition thermal annealing approach. Multiphase Rietveld refinement analysis was implemented to determine phase quantification, lattice parameters, atomic positions and occupancies, bond lengths & angles and crystal structure of the synthesized material. Maximum electrical conductivity, Seebeck coefficient and power factor values of <span><math><mrow><mn>1.58</mn><mo>×</mo><msup><mn>10</mn><mn>4</mn></msup><mspace></mspace><mi>S</mi><msup><mi>m</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>, 232 <span><math><mrow><mi>μ</mi><mi>V</mi><msup><mi>K</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> and 764 <span><math><mrow><mi>μ</mi><mi>W</mi><msup><mi>m</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><msup><mi>K</mi><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span> at 303 K were obtained after annealing of thermally evaporated β-Zn<sub>4</sub>Sb<sub>3</sub> thin films for 6 h. Enhancement in electrical conductivity values were attributed to lowered band gap values, reduced defects & grain boundaries, large crystallite sizes and reorientation of growth direction caused by annealing. Enhancement in Seebeck coefficient values were attributed to the energy filtering effects promoted by increasing surface roughness. Structural characteristics of thin films were investigated, revealing reorientation of crystallites growth direction via thermal annealing. Investigation of optical characteristics revealed a band gap energy value of 1.28 eV for without annealed β-Zn<sub>4</sub>Sb<sub>3</sub> thin film. Morphological properties of thin film surfaces revealed aggregation of grains due to annealing at elevated temperatures and average thin film thickness of 323 nm was determined. Topographical characteristics of thin films were investigated to visualize 3D surface maps, line profile and determine surface roughness.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"80 ","pages":"Pages 311-326"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal annealing induced multifold enhancement in thermoelectric power factor of β-Zn4Sb3 thin films\",\"authors\":\"Avinash Kumar , Nirmal Manyani , Janpreet Singh , S.K. Tripathi\",\"doi\":\"10.1016/j.cap.2025.09.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the present work, thermoelectric parameters electrical conductivity, Seebeck coefficient and power factor of β-Zn<sub>4</sub>Sb<sub>3</sub> thin films at room temperature (303 K) were enhanced by 102.56 %, 110.90 % and 712.76 % respectively using post-deposition thermal annealing approach. Multiphase Rietveld refinement analysis was implemented to determine phase quantification, lattice parameters, atomic positions and occupancies, bond lengths & angles and crystal structure of the synthesized material. Maximum electrical conductivity, Seebeck coefficient and power factor values of <span><math><mrow><mn>1.58</mn><mo>×</mo><msup><mn>10</mn><mn>4</mn></msup><mspace></mspace><mi>S</mi><msup><mi>m</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>, 232 <span><math><mrow><mi>μ</mi><mi>V</mi><msup><mi>K</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> and 764 <span><math><mrow><mi>μ</mi><mi>W</mi><msup><mi>m</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><msup><mi>K</mi><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span> at 303 K were obtained after annealing of thermally evaporated β-Zn<sub>4</sub>Sb<sub>3</sub> thin films for 6 h. Enhancement in electrical conductivity values were attributed to lowered band gap values, reduced defects & grain boundaries, large crystallite sizes and reorientation of growth direction caused by annealing. Enhancement in Seebeck coefficient values were attributed to the energy filtering effects promoted by increasing surface roughness. Structural characteristics of thin films were investigated, revealing reorientation of crystallites growth direction via thermal annealing. Investigation of optical characteristics revealed a band gap energy value of 1.28 eV for without annealed β-Zn<sub>4</sub>Sb<sub>3</sub> thin film. Morphological properties of thin film surfaces revealed aggregation of grains due to annealing at elevated temperatures and average thin film thickness of 323 nm was determined. Topographical characteristics of thin films were investigated to visualize 3D surface maps, line profile and determine surface roughness.</div></div>\",\"PeriodicalId\":11037,\"journal\":{\"name\":\"Current Applied Physics\",\"volume\":\"80 \",\"pages\":\"Pages 311-326\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567173925001932\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173925001932","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Thermal annealing induced multifold enhancement in thermoelectric power factor of β-Zn4Sb3 thin films
In the present work, thermoelectric parameters electrical conductivity, Seebeck coefficient and power factor of β-Zn4Sb3 thin films at room temperature (303 K) were enhanced by 102.56 %, 110.90 % and 712.76 % respectively using post-deposition thermal annealing approach. Multiphase Rietveld refinement analysis was implemented to determine phase quantification, lattice parameters, atomic positions and occupancies, bond lengths & angles and crystal structure of the synthesized material. Maximum electrical conductivity, Seebeck coefficient and power factor values of , 232 and 764 at 303 K were obtained after annealing of thermally evaporated β-Zn4Sb3 thin films for 6 h. Enhancement in electrical conductivity values were attributed to lowered band gap values, reduced defects & grain boundaries, large crystallite sizes and reorientation of growth direction caused by annealing. Enhancement in Seebeck coefficient values were attributed to the energy filtering effects promoted by increasing surface roughness. Structural characteristics of thin films were investigated, revealing reorientation of crystallites growth direction via thermal annealing. Investigation of optical characteristics revealed a band gap energy value of 1.28 eV for without annealed β-Zn4Sb3 thin film. Morphological properties of thin film surfaces revealed aggregation of grains due to annealing at elevated temperatures and average thin film thickness of 323 nm was determined. Topographical characteristics of thin films were investigated to visualize 3D surface maps, line profile and determine surface roughness.
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.