Communications on Pure and Applied Mathematics最新文献

筛选
英文 中文
On the derivation of the homogeneous kinetic wave equation 关于均相动能波方程的推导
IF 3.1 1区 数学
Communications on Pure and Applied Mathematics Pub Date : 2024-11-21 DOI: 10.1002/cpa.22232
Charles Collot, Pierre Germain
{"title":"On the derivation of the homogeneous kinetic wave equation","authors":"Charles Collot,&nbsp;Pierre Germain","doi":"10.1002/cpa.22232","DOIUrl":"10.1002/cpa.22232","url":null,"abstract":"<p>The nonlinear Schrödinger equation in the weakly nonlinear regime with random Gaussian fields as initial data is considered. The problem is set on the torus in any dimension greater than two. A conjecture in statistical physics is that there exists a kinetic time scale depending on the frequency localization of the data and on the strength of the nonlinearity, on which the expectation of the squares of moduli of Fourier modes evolve according to an effective equation: the so-called kinetic wave equation. When the kinetic time for our setup is 1, we prove this conjecture up to an arbitrarily small polynomial loss. When the kinetic time is larger than 1, we obtain its validity on a more restricted time scale. The key idea of the proof is the use of Feynman interaction diagrams both in the construction of an approximate solution and in the study of its nonlinear stability. We perform a truncated series expansion in the initial data, and obtain bounds in average in various function spaces for its elements. The linearized dynamics then involves a linear Schrödinger equation with a corresponding random potential whose operator norm in Bourgain spaces we are able to estimate on average. This gives a new approach for the analysis of nonlinear wave equations out of equilibrium, and gives hope that refinements of the method could help settle the conjecture.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"78 4","pages":"856-909"},"PeriodicalIF":3.1,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142684236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the stability of Runge–Kutta methods for arbitrarily large systems of ODEs 论任意大的 ODE 系统的 Runge-Kutta 方法的稳定性
IF 3.1 1区 数学
Communications on Pure and Applied Mathematics Pub Date : 2024-11-20 DOI: 10.1002/cpa.22238
Eitan Tadmor
{"title":"On the stability of Runge–Kutta methods for arbitrarily large systems of ODEs","authors":"Eitan Tadmor","doi":"10.1002/cpa.22238","DOIUrl":"10.1002/cpa.22238","url":null,"abstract":"<p>We prove that Runge–Kutta (RK) methods for numerical integration of arbitrarily large systems of Ordinary Differential Equations are linearly stable. Standard stability arguments—based on spectral analysis, resolvent condition or strong stability, fail to secure the stability of RK methods for arbitrarily large systems. We explain the failure of different approaches, offer a new stability theory based on the numerical range of the underlying large matrices involved in such systems, and demonstrate its application with concrete examples of RK stability for hyperbolic methods of lines.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"78 4","pages":"821-855"},"PeriodicalIF":3.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22238","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The α $alpha$ -SQG patch problem is illposed in C 2 , β $C^{2,beta }$ and W 2 , p $W^{2,p}$ 在 C2,β$C^{2,beta }$ 和 W2,p$W^{2,p}$ 中,α$alpha$-SQG 补丁问题存在问题。
IF 3.1 1区 数学
Communications on Pure and Applied Mathematics Pub Date : 2024-11-16 DOI: 10.1002/cpa.22236
Alexander Kiselev, Xiaoyutao Luo
{"title":"The \u0000 \u0000 α\u0000 $alpha$\u0000 -SQG patch problem is illposed in \u0000 \u0000 \u0000 C\u0000 \u0000 2\u0000 ,\u0000 β\u0000 \u0000 \u0000 $C^{2,beta }$\u0000 and \u0000 \u0000 \u0000 W\u0000 \u0000 2\u0000 ,\u0000 p\u0000 \u0000 \u0000 $W^{2,p}$","authors":"Alexander Kiselev,&nbsp;Xiaoyutao Luo","doi":"10.1002/cpa.22236","DOIUrl":"10.1002/cpa.22236","url":null,"abstract":"&lt;p&gt;We consider the patch problem for the &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;α&lt;/mi&gt;\u0000 &lt;annotation&gt;$alpha$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-(surface quasi-geostrophic) SQG system with the values &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;α&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$alpha =0$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;α&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mfrac&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mfrac&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$alpha = frac{1}{2}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; being the 2D Euler and the SQG equations respectively. It is well-known that the Euler patches are globally wellposed in non-endpoint &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;β&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;annotation&gt;$C^{k,beta }$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; Hölder spaces, as well as in &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;W&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;annotation&gt;$W^{2,p}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;&lt;&lt;/mo&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;mo&gt;&lt;&lt;/mo&gt;\u0000 &lt;mi&gt;∞&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$1&lt;p&lt;infty$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; spaces. In stark contrast to the Euler case, we prove that for &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;mo&gt;&lt;&lt;/mo&gt;\u0000 &lt;mi&gt;α&lt;/mi&gt;\u0000 &lt;mo&gt;&lt;&lt;/mo&gt;\u0000 &lt;mfrac&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mfrac&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$0&lt;alpha &lt; frac{1}{2}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, the &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;α&lt;/mi&gt;\u0000 &lt;annotation&gt;$alpha$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-SQG patch problem is strongly illposed in &lt;i&gt;every&lt;/i&gt; &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;β&lt;/mi&gt;\u0000 &lt;/mrow","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"78 4","pages":"742-820"},"PeriodicalIF":3.1,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mean-field limit of non-exchangeable systems 不可交换系统的均场极限
IF 3.1 1区 数学
Communications on Pure and Applied Mathematics Pub Date : 2024-11-16 DOI: 10.1002/cpa.22235
Pierre-Emmanuel Jabin, David Poyato, Juan Soler
{"title":"Mean-field limit of non-exchangeable systems","authors":"Pierre-Emmanuel Jabin,&nbsp;David Poyato,&nbsp;Juan Soler","doi":"10.1002/cpa.22235","DOIUrl":"10.1002/cpa.22235","url":null,"abstract":"<p>This paper deals with the derivation of the mean-field limit for multi-agent systems on a large class of sparse graphs. More specifically, the case of non-exchangeable multi-agent systems consisting of non-identical agents is addressed. The analysis does not only involve PDEs and stochastic analysis but also graph theory through a new concept of limits of sparse graphs (extended graphons) that reflect the structure of the connectivities in the network and has critical effects on the collective dynamics. In this article some of the main restrictive hypothesis in the previous literature on the connectivities between the agents (dense graphs) and the cooperation between them (symmetric interactions) are removed.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"78 4","pages":"651-741"},"PeriodicalIF":3.1,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22235","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semiconvexity estimates for nonlinear integro-differential equations 非线性积分微分方程的半凸性估计
IF 3.1 1区 数学
Communications on Pure and Applied Mathematics Pub Date : 2024-11-15 DOI: 10.1002/cpa.22237
Xavier Ros-Oton, Clara Torres-Latorre, Marvin Weidner
{"title":"Semiconvexity estimates for nonlinear integro-differential equations","authors":"Xavier Ros-Oton,&nbsp;Clara Torres-Latorre,&nbsp;Marvin Weidner","doi":"10.1002/cpa.22237","DOIUrl":"10.1002/cpa.22237","url":null,"abstract":"<p>In this paper we establish for the first time local semiconvexity estimates for fully nonlinear equations and for obstacle problems driven by integro-differential operators with general kernels. Our proof is based on the Bernstein technique, which we develop for a natural class of nonlocal operators and consider to be of independent interest. In particular, we solve an open problem from Cabré-Dipierro-Valdinoci. As an application of our result, we establish optimal regularity estimates and smoothness of the free boundary near regular points for the nonlocal obstacle problem on domains. Finally, we also extend the Bernstein technique to parabolic equations and nonsymmetric operators.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"78 3","pages":"592-647"},"PeriodicalIF":3.1,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22237","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rectifiability, finite Hausdorff measure, and compactness for non-minimizing Bernoulli free boundaries 非最小化伯努利自由边界的可整性、有限豪斯多夫度量和紧凑性
IF 3.1 1区 数学
Communications on Pure and Applied Mathematics Pub Date : 2024-10-13 DOI: 10.1002/cpa.22226
Dennis Kriventsov, Georg S. Weiss
{"title":"Rectifiability, finite Hausdorff measure, and compactness for non-minimizing Bernoulli free boundaries","authors":"Dennis Kriventsov,&nbsp;Georg S. Weiss","doi":"10.1002/cpa.22226","DOIUrl":"10.1002/cpa.22226","url":null,"abstract":"&lt;p&gt;While there are numerous results on minimizers or stable solutions of the Bernoulli problem proving regularity of the free boundary and analyzing singularities, much less is known about &lt;i&gt;critical points&lt;/i&gt; of the corresponding energy. Saddle points of the energy (or of closely related energies) and solutions of the corresponding time-dependent problem occur naturally in applied problems such as water waves and combustion theory. For such critical points &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;u&lt;/mi&gt;\u0000 &lt;annotation&gt;$u$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;—which can be obtained as limits of classical solutions or limits of a singular perturbation problem—it has been open since (Weiss, 2003) whether the singular set can be large and what equation the measure &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;Δ&lt;/mi&gt;\u0000 &lt;mi&gt;u&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$Delta u$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; satisfies, except for the case of two dimensions. In the present result we use recent techniques such as a &lt;i&gt;frequency formula&lt;/i&gt; for the Bernoulli problem as well as the celebrated &lt;i&gt;Naber–Valtorta procedure&lt;/i&gt; to answer this more than 20 year old question in an affirmative way: For a closed class we call &lt;i&gt;variational solutions&lt;/i&gt; of the Bernoulli problem, we show that the topological free boundary &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;∂&lt;/mi&gt;\u0000 &lt;mo&gt;{&lt;/mo&gt;\u0000 &lt;mi&gt;u&lt;/mi&gt;\u0000 &lt;mo&gt;&gt;&lt;/mo&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;mo&gt;}&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$partial lbrace u &gt; 0rbrace$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; (including &lt;i&gt;degenerate&lt;/i&gt; singular points &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;x&lt;/mi&gt;\u0000 &lt;annotation&gt;$x$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, at which &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;u&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;x&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mi&gt;r&lt;/mi&gt;\u0000 &lt;mo&gt;·&lt;/mo&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;mo&gt;/&lt;/mo&gt;\u0000 &lt;mi&gt;r&lt;/mi&gt;\u0000 &lt;mo&gt;→&lt;/mo&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$u(x + r cdot)/r rightarrow 0$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; as &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;r&lt;/mi&gt;\u0000 &lt;mo&gt;→&lt;/mo&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$rrightarrow 0$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;) is countably &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 ","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"78 3","pages":"545-591"},"PeriodicalIF":3.1,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22226","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142439720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Pólya conjecture for the Neumann problem in planar convex domains 关于平面凸域中诺伊曼问题的波利亚猜想
IF 3.1 1区 数学
Communications on Pure and Applied Mathematics Pub Date : 2024-10-10 DOI: 10.1002/cpa.22231
N. Filonov
{"title":"On the Pólya conjecture for the Neumann problem in planar convex domains","authors":"N. Filonov","doi":"10.1002/cpa.22231","DOIUrl":"10.1002/cpa.22231","url":null,"abstract":"&lt;p&gt;Denote by &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;Ω&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;λ&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$N_{cal N} (Omega,lambda)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; the counting function of the spectrum of the Neumann problem in the domain &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;Ω&lt;/mi&gt;\u0000 &lt;annotation&gt;$Omega$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; on the plane. G. Pólya conjectured that &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;Ω&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;λ&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;⩾&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mn&gt;4&lt;/mn&gt;\u0000 &lt;mi&gt;π&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;mi&gt;Ω&lt;/mi&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mi&gt;λ&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$N_{cal N} (Omega,lambda) geqslant (4pi)^{-1} |Omega | lambda$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. We prove that for convex domains &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;Ω&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;λ&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;⩾&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;msqrt&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;/msqrt&gt;\u0000 &lt;mspace&gt;&lt;/mspace&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mi&gt;j&lt;/mi&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msubsup&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 ","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"78 3","pages":"537-544"},"PeriodicalIF":3.1,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142405396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smooth asymptotics for collapsing Calabi–Yau metrics 坍缩 Calabi-Yau 度量的平滑渐近线
IF 3.1 1区 数学
Communications on Pure and Applied Mathematics Pub Date : 2024-10-09 DOI: 10.1002/cpa.22228
Hans-Joachim Hein, Valentino Tosatti
{"title":"Smooth asymptotics for collapsing Calabi–Yau metrics","authors":"Hans-Joachim Hein,&nbsp;Valentino Tosatti","doi":"10.1002/cpa.22228","DOIUrl":"10.1002/cpa.22228","url":null,"abstract":"<p>We prove that Calabi–Yau metrics on compact Calabi–Yau manifolds whose Kähler classes shrink the fibers of a holomorphic fibration have a priori estimates of all orders away from the singular fibers. To this end, we prove an asymptotic expansion of these metrics in terms of powers of the fiber diameter, with <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 <mtext>th</mtext>\u0000 </mrow>\u0000 <annotation>$ktext{th}$</annotation>\u0000 </semantics></math>-order remainders that satisfy uniform <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>C</mi>\u0000 <mi>k</mi>\u0000 </msup>\u0000 <annotation>$C^k$</annotation>\u0000 </semantics></math>-estimates with respect to a collapsing family of background metrics. The constants in these estimates are uniform not only in the sense that they are independent of the fiber diameter, but also in the sense that they only depend on the constant in the estimate for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 <mo>=</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$k = 0$</annotation>\u0000 </semantics></math> known from previous work of the second-named author. For <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 <mo>&gt;</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$k &gt; 0$</annotation>\u0000 </semantics></math>, the new estimates are proved by blowup and contradiction, and each additional term of the expansion arises as the obstruction to proving a uniform bound on one additional derivative of the remainder.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"78 2","pages":"382-499"},"PeriodicalIF":3.1,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uniqueness of the blow-down limit for a triple junction problem 三重结点问题的炸毁极限唯一性
IF 3.1 1区 数学
Communications on Pure and Applied Mathematics Pub Date : 2024-10-09 DOI: 10.1002/cpa.22230
Zhiyuan Geng
{"title":"Uniqueness of the blow-down limit for a triple junction problem","authors":"Zhiyuan Geng","doi":"10.1002/cpa.22230","DOIUrl":"10.1002/cpa.22230","url":null,"abstract":"<p>We prove the uniqueness of <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 <annotation>$L^1$</annotation>\u0000 </semantics></math> blow-down limit at infinity for an entire minimizing solution <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>u</mi>\u0000 <mo>:</mo>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <mo>→</mo>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$u:mathbb {R}^2rightarrow mathbb {R}^2$</annotation>\u0000 </semantics></math> of a planar Allen–Cahn system with a triple-well potential. Consequently, <span></span><math>\u0000 <semantics>\u0000 <mi>u</mi>\u0000 <annotation>$u$</annotation>\u0000 </semantics></math> can be approximated by a triple junction map at infinity. The proof exploits a careful analysis of energy upper and lower bounds, ensuring that the diffuse interface remains within a small neighborhood of the approximated triple junction at all scales.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"78 2","pages":"500-534"},"PeriodicalIF":3.1,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22230","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integral formulation of Klein–Gordon singular waveguides 克莱因-戈登奇异波导的积分公式
IF 3.1 1区 数学
Communications on Pure and Applied Mathematics Pub Date : 2024-10-06 DOI: 10.1002/cpa.22227
Guillaume Bal, Jeremy Hoskins, Solomon Quinn, Manas Rachh
{"title":"Integral formulation of Klein–Gordon singular waveguides","authors":"Guillaume Bal,&nbsp;Jeremy Hoskins,&nbsp;Solomon Quinn,&nbsp;Manas Rachh","doi":"10.1002/cpa.22227","DOIUrl":"10.1002/cpa.22227","url":null,"abstract":"<p>We consider the analysis of singular waveguides separating insulating phases in two-space dimensions. The insulating domains are modeled by a massive Schrödinger equation and the singular waveguide by appropriate jump conditions along the one-dimensional interface separating the insulators. We present an integral formulation of the problem and analyze its mathematical properties. We also implement a fast multipole and sweeping-accelerated iterative algorithm for solving the integral equations, and demonstrate numerically the fast convergence of this method. Several numerical examples of solutions and scattering effects illustrate our theory.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"78 2","pages":"323-365"},"PeriodicalIF":3.1,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22227","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142384201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信