Communications on Pure and Applied Mathematics最新文献

筛选
英文 中文
Global regularity for critical SQG in bounded domains 有界域中临界 SQG 的全局正则性
IF 3 1区 数学
Communications on Pure and Applied Mathematics Pub Date : 2024-07-24 DOI: 10.1002/cpa.22221
Peter Constantin, Mihaela Ignatova, Quoc‐Hung Nguyen
{"title":"Global regularity for critical SQG in bounded domains","authors":"Peter Constantin, Mihaela Ignatova, Quoc‐Hung Nguyen","doi":"10.1002/cpa.22221","DOIUrl":"https://doi.org/10.1002/cpa.22221","url":null,"abstract":"We prove the existence and uniqueness of global smooth solutions of the critical dissipative SQG equation in bounded domains in . We introduce a new methodology of transforming the single nonlocal nonlinear evolution equation in a bounded domain into an interacting system of extended nonlocal nonlinear evolution equations in the whole space. The proof then uses the method of the nonlinear maximum principle for nonlocal operators in the extended system.","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141755298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A variational construction of Hamiltonian stationary surfaces with isolated Schoen–Wolfson conical singularities 具有孤立 Schoen-Wolfson 圆锥奇点的哈密顿静止面的变分构造
IF 3.1 1区 数学
Communications on Pure and Applied Mathematics Pub Date : 2024-06-07 DOI: 10.1002/cpa.22220
Filippo Gaia, Gerard Orriols, Tristan Rivière
{"title":"A variational construction of Hamiltonian stationary surfaces with isolated Schoen–Wolfson conical singularities","authors":"Filippo Gaia,&nbsp;Gerard Orriols,&nbsp;Tristan Rivière","doi":"10.1002/cpa.22220","DOIUrl":"https://doi.org/10.1002/cpa.22220","url":null,"abstract":"<p>We construct using variational methods Hamiltonian stationary surfaces with isolated Schoen–Wolfson conical singularities. We obtain these surfaces through a convergence process reminiscent to the Ginzburg–Landau asymptotic analysis in the strongly repulsive regime introduced by Bethuel, Brezis and Hélein. We describe in particular how the prescription of Schoen–Wolfson conical singularities is related to optimal Wente constants.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Almost sharp lower bound for the nodal volume of harmonic functions 谐函数节点体积的近似尖锐下界
IF 3.1 1区 数学
Communications on Pure and Applied Mathematics Pub Date : 2024-05-29 DOI: 10.1002/cpa.22207
Alexander Logunov, Lakshmi Priya M. E., Andrea Sartori
{"title":"Almost sharp lower bound for the nodal volume of harmonic functions","authors":"Alexander Logunov,&nbsp;Lakshmi Priya M. E.,&nbsp;Andrea Sartori","doi":"10.1002/cpa.22207","DOIUrl":"10.1002/cpa.22207","url":null,"abstract":"<p>This paper focuses on a relation between the growth of harmonic functions and the Hausdorff measure of their zero sets. Let <span></span><math>\u0000 <semantics>\u0000 <mi>u</mi>\u0000 <annotation>$u$</annotation>\u0000 </semantics></math> be a real-valued harmonic function in <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <annotation>$mathbb {R}^n$</annotation>\u0000 </semantics></math> with <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>u</mi>\u0000 <mo>(</mo>\u0000 <mn>0</mn>\u0000 <mo>)</mo>\u0000 <mo>=</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$u(0)=0$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>≥</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$nge 3$</annotation>\u0000 </semantics></math>. We prove\u0000\u0000 </p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22207","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141177297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Allen–Cahn solutions with triple junction structure at infinity 无穷远处具有三重结点结构的艾伦-卡恩解
IF 3.1 1区 数学
Communications on Pure and Applied Mathematics Pub Date : 2024-05-17 DOI: 10.1002/cpa.22204
Étienne Sandier, Peter Sternberg
{"title":"Allen–Cahn solutions with triple junction structure at infinity","authors":"Étienne Sandier,&nbsp;Peter Sternberg","doi":"10.1002/cpa.22204","DOIUrl":"10.1002/cpa.22204","url":null,"abstract":"<p>We construct an entire solution <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>U</mi>\u0000 <mo>:</mo>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <mo>→</mo>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$U:mathbb {R}^2rightarrow mathbb {R}^2$</annotation>\u0000 </semantics></math> to the elliptic system\u0000\u0000 </p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140953873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiplicative chaos measures from thick points of log-correlated fields 来自对数相关场厚点的乘法混沌度量
IF 3.1 1区 数学
Communications on Pure and Applied Mathematics Pub Date : 2024-05-17 DOI: 10.1002/cpa.22205
Janne Junnila, Gaultier Lambert, Christian Webb
{"title":"Multiplicative chaos measures from thick points of log-correlated fields","authors":"Janne Junnila,&nbsp;Gaultier Lambert,&nbsp;Christian Webb","doi":"10.1002/cpa.22205","DOIUrl":"10.1002/cpa.22205","url":null,"abstract":"<p>We prove that multiplicative chaos measures can be constructed from extreme level sets or <i>thick points</i> of the underlying logarithmically correlated field. We develop a method which covers the whole subcritical phase and only requires asymptotics of suitable exponential moments for the field. As an application, we establish that these estimates hold for the logarithm of the absolute value of the characteristic polynomial of a Haar distributed random unitary matrix (CUE), using known asymptotics for Toeplitz determinant with (merging) Fisher–Hartwig singularities. Hence, this proves a conjecture of Fyodorov and Keating concerning the fluctuations of the volume of thick points of the CUE characteristic polynomial.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22205","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140954009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Twisted Kähler–Einstein metrics in big classes 大类中的扭曲凯勒-爱因斯坦度量
IF 3.1 1区 数学
Communications on Pure and Applied Mathematics Pub Date : 2024-05-17 DOI: 10.1002/cpa.22206
Tamás Darvas, Kewei Zhang
{"title":"Twisted Kähler–Einstein metrics in big classes","authors":"Tamás Darvas,&nbsp;Kewei Zhang","doi":"10.1002/cpa.22206","DOIUrl":"10.1002/cpa.22206","url":null,"abstract":"<p>We prove existence of twisted Kähler–Einstein metrics in big cohomology classes, using a divisorial stability condition. In particular, when <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>−</mo>\u0000 <msub>\u0000 <mi>K</mi>\u0000 <mi>X</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$-K_X$</annotation>\u0000 </semantics></math> is big, we obtain a uniform Yau–Tian–Donaldson (YTD) existence theorem for Kähler–Einstein (KE) metrics. To achieve this, we build up from scratch the theory of Fujita–Odaka type delta invariants in the transcendental big setting, using pluripotential theory. We do not use the K-energy in our arguments, and our techniques provide a simple roadmap to prove YTD existence theorems for KE type metrics, that only needs convexity of the appropriate Ding energy. As an application, we give a simplified proof of Li–Tian–Wang's existence theorem in the log Fano setting.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140953951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Infinite-width limit of deep linear neural networks 深度线性神经网络的无穷宽极限
IF 3.1 1区 数学
Communications on Pure and Applied Mathematics Pub Date : 2024-05-06 DOI: 10.1002/cpa.22200
Lénaïc Chizat, Maria Colombo, Xavier Fernández-Real, Alessio Figalli
{"title":"Infinite-width limit of deep linear neural networks","authors":"Lénaïc Chizat,&nbsp;Maria Colombo,&nbsp;Xavier Fernández-Real,&nbsp;Alessio Figalli","doi":"10.1002/cpa.22200","DOIUrl":"10.1002/cpa.22200","url":null,"abstract":"<p>This paper studies the infinite-width limit of deep linear neural networks (NNs) initialized with random parameters. We obtain that, when the number of parameters diverges, the training dynamics converge (in a precise sense) to the dynamics obtained from a gradient descent on an infinitely wide deterministic linear NN. Moreover, even if the weights remain random, we get their precise law along the training dynamics, and prove a quantitative convergence result of the linear predictor in terms of the number of parameters. We finally study the continuous-time limit obtained for infinitely wide linear NNs and show that the linear predictors of the NN converge at an exponential rate to the minimal <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>ℓ</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <annotation>$ell _2$</annotation>\u0000 </semantics></math>-norm minimizer of the risk.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22200","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140845799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Calogero–Moser derivative nonlinear Schrödinger equation 卡洛吉罗-莫泽导数非线性薛定谔方程
IF 3.1 1区 数学
Communications on Pure and Applied Mathematics Pub Date : 2024-05-06 DOI: 10.1002/cpa.22203
Patrick Gérard, Enno Lenzmann
{"title":"The Calogero–Moser derivative nonlinear Schrödinger equation","authors":"Patrick Gérard,&nbsp;Enno Lenzmann","doi":"10.1002/cpa.22203","DOIUrl":"10.1002/cpa.22203","url":null,"abstract":"<p>We study the Calogero–Moser derivative nonlinear Schrödinger NLS equation\u0000\u0000 </p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22203","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140845697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leapfrogging vortex rings for the three-dimensional incompressible Euler equations 三维不可压缩欧拉方程的跃迁涡环
IF 3.1 1区 数学
Communications on Pure and Applied Mathematics Pub Date : 2024-05-06 DOI: 10.1002/cpa.22199
Juan Dávila, Manuel del Pino, Monica Musso, Juncheng Wei
{"title":"Leapfrogging vortex rings for the three-dimensional incompressible Euler equations","authors":"Juan Dávila,&nbsp;Manuel del Pino,&nbsp;Monica Musso,&nbsp;Juncheng Wei","doi":"10.1002/cpa.22199","DOIUrl":"10.1002/cpa.22199","url":null,"abstract":"<p>A classical problem in fluid dynamics concerns the interaction of multiple vortex rings sharing a common axis of symmetry in an incompressible, inviscid three-dimensional fluid. In 1858, Helmholtz observed that a pair of similar thin, coaxial vortex rings may pass through each other repeatedly due to the induced flow of the rings acting on each other. This celebrated configuration, known as <i>leapfrogging</i>, has not yet been rigorously established. We provide a mathematical justification for this phenomenon by constructing a smooth solution of the 3D Euler equations  exhibiting this motion pattern.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22199","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140845770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wegner estimate and upper bound on the eigenvalue condition number of non-Hermitian random matrices 非ermitian 随机矩阵的韦格纳估计值和特征值条件数上限
IF 3.1 1区 数学
Communications on Pure and Applied Mathematics Pub Date : 2024-05-03 DOI: 10.1002/cpa.22201
László Erdős, Hong Chang Ji
{"title":"Wegner estimate and upper bound on the eigenvalue condition number of non-Hermitian random matrices","authors":"László Erdős,&nbsp;Hong Chang Ji","doi":"10.1002/cpa.22201","DOIUrl":"10.1002/cpa.22201","url":null,"abstract":"<p>We consider <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>N</mi>\u0000 <mo>×</mo>\u0000 <mi>N</mi>\u0000 </mrow>\u0000 <annotation>$Ntimes N$</annotation>\u0000 </semantics></math> non-Hermitian random matrices of the form <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>X</mi>\u0000 <mo>+</mo>\u0000 <mi>A</mi>\u0000 </mrow>\u0000 <annotation>$X+A$</annotation>\u0000 </semantics></math>, where <span></span><math>\u0000 <semantics>\u0000 <mi>A</mi>\u0000 <annotation>$A$</annotation>\u0000 </semantics></math> is a general deterministic matrix and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msqrt>\u0000 <mi>N</mi>\u0000 </msqrt>\u0000 <mi>X</mi>\u0000 </mrow>\u0000 <annotation>$sqrt {N}X$</annotation>\u0000 </semantics></math> consists of independent entries with zero mean, unit variance, and bounded densities. For this ensemble, we prove (i) a Wegner estimate, that is, that the local density of eigenvalues is bounded by <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>N</mi>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>+</mo>\u0000 <mi>o</mi>\u0000 <mo>(</mo>\u0000 <mn>1</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </msup>\u0000 <annotation>$N^{1+o(1)}$</annotation>\u0000 </semantics></math> and (ii) that the expected condition number of any bulk eigenvalue is bounded by <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>N</mi>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>+</mo>\u0000 <mi>o</mi>\u0000 <mo>(</mo>\u0000 <mn>1</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </msup>\u0000 <annotation>$N^{1+o(1)}$</annotation>\u0000 </semantics></math>; both results are optimal up to the factor <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>N</mi>\u0000 <mrow>\u0000 <mi>o</mi>\u0000 <mo>(</mo>\u0000 <mn>1</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </msup>\u0000 <annotation>$N^{o(1)}$</annotation>\u0000 </semantics></math>. The latter result complements the very recent matching lower bound obtained by Cipolloni et al. and improves the <span></span><math>\u0000 <s","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22201","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140821745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信