First‐order Sobolev spaces, self‐similar energies and energy measures on the Sierpiński carpet

IF 3.1 1区 数学 Q1 MATHEMATICS
Mathav Murugan, Ryosuke Shimizu
{"title":"First‐order Sobolev spaces, self‐similar energies and energy measures on the Sierpiński carpet","authors":"Mathav Murugan, Ryosuke Shimizu","doi":"10.1002/cpa.22247","DOIUrl":null,"url":null,"abstract":"For any , we construct ‐energies and the corresponding ‐energy measures on the Sierpiński carpet. A salient feature of our Sobolev space is the self‐similarity of energy. An important motivation for the construction of self‐similar energy and energy measures is to determine whether or not the Ahlfors regular conformal dimension is attained on the Sierpiński carpet. If the Ahlfors regular conformal dimension is attained, we show that any optimal Ahlfors regular measure attaining the Ahlfors regular conformal dimension must necessarily be a bounded perturbation of the ‐energy measure of some function in our Sobolev space, where is the Ahlfors regular conformal dimension. Under the attainment of the Ahlfors regular conformal dimension, the ‐Newtonian Sobolev space corresponding to any optimal Ahlfors regular metric and measure is shown to coincide with our Sobolev space with comparable norms, where is the Ahlfors regular conformal dimension.","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"12 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/cpa.22247","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For any , we construct ‐energies and the corresponding ‐energy measures on the Sierpiński carpet. A salient feature of our Sobolev space is the self‐similarity of energy. An important motivation for the construction of self‐similar energy and energy measures is to determine whether or not the Ahlfors regular conformal dimension is attained on the Sierpiński carpet. If the Ahlfors regular conformal dimension is attained, we show that any optimal Ahlfors regular measure attaining the Ahlfors regular conformal dimension must necessarily be a bounded perturbation of the ‐energy measure of some function in our Sobolev space, where is the Ahlfors regular conformal dimension. Under the attainment of the Ahlfors regular conformal dimension, the ‐Newtonian Sobolev space corresponding to any optimal Ahlfors regular metric and measure is shown to coincide with our Sobolev space with comparable norms, where is the Ahlfors regular conformal dimension.
一阶Sobolev空间,自相似能量和Sierpiński地毯上的能量度量
对于任意一个,我们在Sierpiński地毯上构造-能量和相应的-能量度量。Sobolev空间的一个显著特征是能量的自相似。构建自相似能量和能量度量的一个重要动机是确定Sierpiński地毯上是否达到Ahlfors正则保形维数。如果获得了Ahlfors正则共形维数,我们证明了任何达到Ahlfors正则共形维数的最优Ahlfors正则测度必然是Sobolev空间中某个函数的能量测度的有界扰动,其中是Ahlfors正则共形维数。在得到Ahlfors正则共形维数的条件下,证明了任意最优Ahlfors正则度量和测度所对应的牛顿Sobolev空间与具有可比范数的Sobolev空间重合,其中为Ahlfors正则共形维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信