Polynomial lower bound on the effective resistance for the one-dimensional critical long-range percolation

IF 3.1 1区 数学 Q1 MATHEMATICS
Jian Ding, Zherui Fan, Lu-Jing Huang
{"title":"Polynomial lower bound on the effective resistance for the one-dimensional critical long-range percolation","authors":"Jian Ding,&nbsp;Zherui Fan,&nbsp;Lu-Jing Huang","doi":"10.1002/cpa.22243","DOIUrl":null,"url":null,"abstract":"<p>In this work, we study the critical long-range percolation (LRP) on <span></span><math>\n <semantics>\n <mi>Z</mi>\n <annotation>$\\mathbb {Z}$</annotation>\n </semantics></math>, where an edge connects <span></span><math>\n <semantics>\n <mi>i</mi>\n <annotation>$i$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>j</mi>\n <annotation>$j$</annotation>\n </semantics></math> independently with probability 1 for <span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>i</mi>\n <mo>−</mo>\n <mi>j</mi>\n <mo>|</mo>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$|i-j|=1$</annotation>\n </semantics></math> and with probability <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>−</mo>\n <mi>exp</mi>\n <mo>{</mo>\n <mo>−</mo>\n <mi>β</mi>\n <msubsup>\n <mo>∫</mo>\n <mi>i</mi>\n <mrow>\n <mi>i</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msubsup>\n <msubsup>\n <mo>∫</mo>\n <mi>j</mi>\n <mrow>\n <mi>j</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msubsup>\n <mo>|</mo>\n <mi>u</mi>\n <mo>−</mo>\n <mi>v</mi>\n <msup>\n <mo>|</mo>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n <mi>d</mi>\n <mi>u</mi>\n <mi>d</mi>\n <mi>v</mi>\n <mo>}</mo>\n </mrow>\n <annotation>$1-\\exp \\lbrace -\\beta \\int _i^{i+1}\\int _j^{j+1}|u-v|^{-2}{\\rm d}u{\\rm d}v\\rbrace$</annotation>\n </semantics></math> for some fixed <span></span><math>\n <semantics>\n <mrow>\n <mi>β</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\beta &gt;0$</annotation>\n </semantics></math>. Viewing this as a random electric network where each edge has a unit conductance, we show that with high probability the effective resistances from the origin 0 to <span></span><math>\n <semantics>\n <msup>\n <mrow>\n <mo>[</mo>\n <mo>−</mo>\n <mi>N</mi>\n <mo>,</mo>\n <mi>N</mi>\n <mo>]</mo>\n </mrow>\n <mi>c</mi>\n </msup>\n <annotation>$[-N, N]^c$</annotation>\n </semantics></math> and from the interval <span></span><math>\n <semantics>\n <mrow>\n <mo>[</mo>\n <mo>−</mo>\n <mi>N</mi>\n <mo>,</mo>\n <mi>N</mi>\n <mo>]</mo>\n </mrow>\n <annotation>$[-N,N]$</annotation>\n </semantics></math> to <span></span><math>\n <semantics>\n <msup>\n <mrow>\n <mo>[</mo>\n <mo>−</mo>\n <mn>2</mn>\n <mi>N</mi>\n <mo>,</mo>\n <mn>2</mn>\n <mi>N</mi>\n <mo>]</mo>\n </mrow>\n <mi>c</mi>\n </msup>\n <annotation>$[-2N,2N]^c$</annotation>\n </semantics></math> (conditioned on no edge joining <span></span><math>\n <semantics>\n <mrow>\n <mo>[</mo>\n <mo>−</mo>\n <mi>N</mi>\n <mo>,</mo>\n <mi>N</mi>\n <mo>]</mo>\n </mrow>\n <annotation>$[-N,N]$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msup>\n <mrow>\n <mo>[</mo>\n <mo>−</mo>\n <mn>2</mn>\n <mi>N</mi>\n <mo>,</mo>\n <mn>2</mn>\n <mi>N</mi>\n <mo>]</mo>\n </mrow>\n <mi>c</mi>\n </msup>\n <annotation>$[-2N,2N]^c$</annotation>\n </semantics></math>) both have a polynomial lower bound in <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math>. Our bound holds for all <span></span><math>\n <semantics>\n <mrow>\n <mi>β</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\beta &gt;0$</annotation>\n </semantics></math> and thus rules out a potential phase transition (around <span></span><math>\n <semantics>\n <mrow>\n <mi>β</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\beta = 1$</annotation>\n </semantics></math>) which seemed to be a reasonable possibility.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"78 7","pages":"1251-1284"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22243","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we study the critical long-range percolation (LRP) on Z $\mathbb {Z}$ , where an edge connects i $i$ and j $j$ independently with probability 1 for | i j | = 1 $|i-j|=1$ and with probability 1 exp { β i i + 1 j j + 1 | u v | 2 d u d v } $1-\exp \lbrace -\beta \int _i^{i+1}\int _j^{j+1}|u-v|^{-2}{\rm d}u{\rm d}v\rbrace$ for some fixed β > 0 $\beta >0$ . Viewing this as a random electric network where each edge has a unit conductance, we show that with high probability the effective resistances from the origin 0 to [ N , N ] c $[-N, N]^c$ and from the interval [ N , N ] $[-N,N]$ to [ 2 N , 2 N ] c $[-2N,2N]^c$ (conditioned on no edge joining [ N , N ] $[-N,N]$ and [ 2 N , 2 N ] c $[-2N,2N]^c$ ) both have a polynomial lower bound in N $N$ . Our bound holds for all β > 0 $\beta >0$ and thus rules out a potential phase transition (around β = 1 $\beta = 1$ ) which seemed to be a reasonable possibility.

一维临界远程渗流有效阻力的多项式下界
在这项工作中,我们研究了临界远程渗透(LRP),其中边缘以1的概率连接并独立于某些固定的概率。将其视为一个随机的电网络,其中每条边都有一个单位电导,我们表明,从原点0到的有效电阻和从区间到的有效电阻(条件是没有边连接和)都有一个多项式下界。我们的界限适用于所有,因此排除了似乎是合理可能性的潜在相变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信