{"title":"Polynomial lower bound on the effective resistance for the one-dimensional critical long-range percolation","authors":"Jian Ding, Zherui Fan, Lu-Jing Huang","doi":"10.1002/cpa.22243","DOIUrl":null,"url":null,"abstract":"<p>In this work, we study the critical long-range percolation (LRP) on <span></span><math>\n <semantics>\n <mi>Z</mi>\n <annotation>$\\mathbb {Z}$</annotation>\n </semantics></math>, where an edge connects <span></span><math>\n <semantics>\n <mi>i</mi>\n <annotation>$i$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>j</mi>\n <annotation>$j$</annotation>\n </semantics></math> independently with probability 1 for <span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>i</mi>\n <mo>−</mo>\n <mi>j</mi>\n <mo>|</mo>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$|i-j|=1$</annotation>\n </semantics></math> and with probability <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>−</mo>\n <mi>exp</mi>\n <mo>{</mo>\n <mo>−</mo>\n <mi>β</mi>\n <msubsup>\n <mo>∫</mo>\n <mi>i</mi>\n <mrow>\n <mi>i</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msubsup>\n <msubsup>\n <mo>∫</mo>\n <mi>j</mi>\n <mrow>\n <mi>j</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msubsup>\n <mo>|</mo>\n <mi>u</mi>\n <mo>−</mo>\n <mi>v</mi>\n <msup>\n <mo>|</mo>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n <mi>d</mi>\n <mi>u</mi>\n <mi>d</mi>\n <mi>v</mi>\n <mo>}</mo>\n </mrow>\n <annotation>$1-\\exp \\lbrace -\\beta \\int _i^{i+1}\\int _j^{j+1}|u-v|^{-2}{\\rm d}u{\\rm d}v\\rbrace$</annotation>\n </semantics></math> for some fixed <span></span><math>\n <semantics>\n <mrow>\n <mi>β</mi>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\beta >0$</annotation>\n </semantics></math>. Viewing this as a random electric network where each edge has a unit conductance, we show that with high probability the effective resistances from the origin 0 to <span></span><math>\n <semantics>\n <msup>\n <mrow>\n <mo>[</mo>\n <mo>−</mo>\n <mi>N</mi>\n <mo>,</mo>\n <mi>N</mi>\n <mo>]</mo>\n </mrow>\n <mi>c</mi>\n </msup>\n <annotation>$[-N, N]^c$</annotation>\n </semantics></math> and from the interval <span></span><math>\n <semantics>\n <mrow>\n <mo>[</mo>\n <mo>−</mo>\n <mi>N</mi>\n <mo>,</mo>\n <mi>N</mi>\n <mo>]</mo>\n </mrow>\n <annotation>$[-N,N]$</annotation>\n </semantics></math> to <span></span><math>\n <semantics>\n <msup>\n <mrow>\n <mo>[</mo>\n <mo>−</mo>\n <mn>2</mn>\n <mi>N</mi>\n <mo>,</mo>\n <mn>2</mn>\n <mi>N</mi>\n <mo>]</mo>\n </mrow>\n <mi>c</mi>\n </msup>\n <annotation>$[-2N,2N]^c$</annotation>\n </semantics></math> (conditioned on no edge joining <span></span><math>\n <semantics>\n <mrow>\n <mo>[</mo>\n <mo>−</mo>\n <mi>N</mi>\n <mo>,</mo>\n <mi>N</mi>\n <mo>]</mo>\n </mrow>\n <annotation>$[-N,N]$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msup>\n <mrow>\n <mo>[</mo>\n <mo>−</mo>\n <mn>2</mn>\n <mi>N</mi>\n <mo>,</mo>\n <mn>2</mn>\n <mi>N</mi>\n <mo>]</mo>\n </mrow>\n <mi>c</mi>\n </msup>\n <annotation>$[-2N,2N]^c$</annotation>\n </semantics></math>) both have a polynomial lower bound in <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math>. Our bound holds for all <span></span><math>\n <semantics>\n <mrow>\n <mi>β</mi>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\beta >0$</annotation>\n </semantics></math> and thus rules out a potential phase transition (around <span></span><math>\n <semantics>\n <mrow>\n <mi>β</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\beta = 1$</annotation>\n </semantics></math>) which seemed to be a reasonable possibility.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"78 7","pages":"1251-1284"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22243","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we study the critical long-range percolation (LRP) on , where an edge connects and independently with probability 1 for and with probability for some fixed . Viewing this as a random electric network where each edge has a unit conductance, we show that with high probability the effective resistances from the origin 0 to and from the interval to (conditioned on no edge joining and ) both have a polynomial lower bound in . Our bound holds for all and thus rules out a potential phase transition (around ) which seemed to be a reasonable possibility.