Analysis of density matrix embedding theory around the non-interacting limit

IF 2.7 1区 数学 Q1 MATHEMATICS
Eric Cancès, Fabian M. Faulstich, Alfred Kirsch, Eloïse Letournel, Antoine Levitt
{"title":"Analysis of density matrix embedding theory around the non-interacting limit","authors":"Eric Cancès,&nbsp;Fabian M. Faulstich,&nbsp;Alfred Kirsch,&nbsp;Eloïse Letournel,&nbsp;Antoine Levitt","doi":"10.1002/cpa.22244","DOIUrl":null,"url":null,"abstract":"<p>This article provides the first mathematical analysis of the Density Matrix Embedding Theory (DMET) method. We prove that, under certain assumptions, (i) the exact ground-state density matrix is a fixed-point of the DMET map for non-interacting systems, (ii) there exists a unique physical solution in the weakly-interacting regime, and (iii) DMET is exact up to first order in the coupling parameter. We provide numerical simulations to support our results and comment on the physical meaning of the assumptions under which they hold true. We show that the violation of these assumptions may yield multiple solutions to the DMET equations. We moreover introduce and discuss a specific <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math>-representability problem inherent to DMET.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"78 8","pages":"1359-1410"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22244","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22244","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This article provides the first mathematical analysis of the Density Matrix Embedding Theory (DMET) method. We prove that, under certain assumptions, (i) the exact ground-state density matrix is a fixed-point of the DMET map for non-interacting systems, (ii) there exists a unique physical solution in the weakly-interacting regime, and (iii) DMET is exact up to first order in the coupling parameter. We provide numerical simulations to support our results and comment on the physical meaning of the assumptions under which they hold true. We show that the violation of these assumptions may yield multiple solutions to the DMET equations. We moreover introduce and discuss a specific N $N$ -representability problem inherent to DMET.

Abstract Image

围绕非相互作用极限的密度矩阵嵌入理论分析
本文首次对密度矩阵嵌入理论(DMET)方法进行了数学分析。我们证明,在一定的假设下,(i)非相互作用系统的精确基态密度矩阵是DMET映射的一个不动点,(ii)弱相互作用区域存在唯一的物理解,(iii) DMET在耦合参数中精确到一阶。我们提供了数值模拟来支持我们的结果,并对它们成立的假设的物理意义进行了评论。我们证明,违反这些假设可能会产生DMET方程的多个解。此外,我们还介绍并讨论了DMET固有的一个特定的可表征性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信