Uniqueness on average of large isoperimetric sets in noncompact manifolds with nonnegative Ricci curvature

IF 3.1 1区 数学 Q1 MATHEMATICS
Gioacchino Antonelli, Marco Pozzetta, Daniele Semola
{"title":"Uniqueness on average of large isoperimetric sets in noncompact manifolds with nonnegative Ricci curvature","authors":"Gioacchino Antonelli, Marco Pozzetta, Daniele Semola","doi":"10.1002/cpa.22252","DOIUrl":null,"url":null,"abstract":"Let be a complete Riemannian manifold which is not isometric to , has nonnegative Ricci curvature, Euclidean volume growth, and quadratic Riemann curvature decay. We prove that there exists a set with density 1 at infinity such that for every there is a unique isoperimetric set of volume in ; moreover, its boundary is strictly volume preserving stable. The latter result cannot be improved to uniqueness or strict stability for every large volume. Indeed, we construct a complete Riemannian surface satisfying the previous assumptions and with the following additional property: there exist arbitrarily large and diverging intervals such that isoperimetric sets with volumes exist, but they are neither unique nor do they have strictly volume preserving stable boundaries.","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"73 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/cpa.22252","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let be a complete Riemannian manifold which is not isometric to , has nonnegative Ricci curvature, Euclidean volume growth, and quadratic Riemann curvature decay. We prove that there exists a set with density 1 at infinity such that for every there is a unique isoperimetric set of volume in ; moreover, its boundary is strictly volume preserving stable. The latter result cannot be improved to uniqueness or strict stability for every large volume. Indeed, we construct a complete Riemannian surface satisfying the previous assumptions and with the following additional property: there exist arbitrarily large and diverging intervals such that isoperimetric sets with volumes exist, but they are neither unique nor do they have strictly volume preserving stable boundaries.
非负Ricci曲率非紧流形中大等周集的平均唯一性
假设是一个完整的黎曼流形,它不是等距的,具有非负里奇曲率,欧几里得体积增长和二次黎曼曲率衰减。我们证明了在无穷远处存在一个密度为1的集合,使得每一个都有一个唯一的体积等周集合;而且,它的边界是严格保持体积稳定的。后一种结果不能改进到对每个大体积都具有唯一性或严格的稳定性。实际上,我们构造了一个满足上述假设的完备黎曼曲面,并具有以下附加性质:存在任意大且发散的区间,使得具有体积的等周集存在,但它们既不是唯一的,也没有严格保持体积的稳定边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信