{"title":"On the Read‐Shockley energy for grain boundaries in 2D polycrystals","authors":"Martino Fortuna, Adriana Garroni, Emanuele Spadaro","doi":"10.1002/cpa.22245","DOIUrl":null,"url":null,"abstract":"In the 50's Read and Shockley proposed a formula for the energy of small angle grain boundaries in polycrystals based on linearized elasticity and an ansatz on the distribution of incompatibilities of the lattice at the interface between two grains. The logarithmic scaling of this formula has been rigorously justified without any ansatz on the geometry of dislocations only recently in an article by Lauteri and Luckhaus. In the present paper, building upon their analysis, we derive a two dimensional sharp interface limiting functional starting from the nonlinear semi‐discrete model introduced in Lauteri and Luckhaus: the line tension we obtain via ‐convergence depends on the rotations of the grains and the relative orientations of the interfaces, and for small angle grain boundaries has the Read and Shockley logarithmic scaling.","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"13 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/cpa.22245","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In the 50's Read and Shockley proposed a formula for the energy of small angle grain boundaries in polycrystals based on linearized elasticity and an ansatz on the distribution of incompatibilities of the lattice at the interface between two grains. The logarithmic scaling of this formula has been rigorously justified without any ansatz on the geometry of dislocations only recently in an article by Lauteri and Luckhaus. In the present paper, building upon their analysis, we derive a two dimensional sharp interface limiting functional starting from the nonlinear semi‐discrete model introduced in Lauteri and Luckhaus: the line tension we obtain via ‐convergence depends on the rotations of the grains and the relative orientations of the interfaces, and for small angle grain boundaries has the Read and Shockley logarithmic scaling.