Communications Materials最新文献

筛选
英文 中文
Magnetic control of phonon transport in magnetic insulator thulium iron garnet 磁性绝缘体铥铁榴石中声子传输的磁控制
IF 7.5
Communications Materials Pub Date : 2024-11-06 DOI: 10.1038/s43246-024-00682-2
Geun-Hee Lee, Phuoc Cao Van, Jong-Ryul Jeong, Se Kwon Kim, Kab-Jin Kim
{"title":"Magnetic control of phonon transport in magnetic insulator thulium iron garnet","authors":"Geun-Hee Lee, Phuoc Cao Van, Jong-Ryul Jeong, Se Kwon Kim, Kab-Jin Kim","doi":"10.1038/s43246-024-00682-2","DOIUrl":"10.1038/s43246-024-00682-2","url":null,"abstract":"The coupling between magnons and phonons and the associated phenomena have long been a focus of research in condensed matter physics. Contrary to its recognized role in magnon relaxation, its impact on phonon transport remains largely unexplored. Here, we fill this gap by investigating the effect of magnon-phonon coupling on phonon excitation, relaxation, and transport with magneto-optical reflectometry. Through simultaneous measurements of magnon and phonon populations in magnetic insulator thulium iron garnet, we observe the excitation of excessive phonons driven by non-equilibrium magnons, demonstrating the magnetic control of phonons. Furthermore, our time-resolved experiments reveal the magnetic field-dependent phononic thermal conductivity, signaling the potential of magnetic manipulation of heat transport. Our finding indicates that phonons can be controlled by magnetic means through magnon-phonon coupling and thereby opens a new avenue to harness magneto-thermoelectric effects in magnetic insulators. The coupling between magnons and phonons is an important aspect of condensed matter physics, but most research is related to magnon relaxation effects rather than the impact on phonon transport. Here, the effect of magnon-phonon coupling on phonon excitation, relaxation, and transport is investigated by time-resolved magneto-optical reflectometry.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-6"},"PeriodicalIF":7.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00682-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diverse electronic landscape of the kagome metal YbTi3Bi4 可可金属 YbTi3Bi4 的多样化电子景观
IF 7.5
Communications Materials Pub Date : 2024-11-03 DOI: 10.1038/s43246-024-00681-3
Anup Pradhan Sakhya, Brenden R. Ortiz, Barun Ghosh, Milo Sprague, Mazharul Islam Mondal, Matthew Matzelle, Iftakhar Bin Elius, Nathan Valadez, David G. Mandrus, Arun Bansil, Madhab Neupane
{"title":"Diverse electronic landscape of the kagome metal YbTi3Bi4","authors":"Anup Pradhan Sakhya, Brenden R. Ortiz, Barun Ghosh, Milo Sprague, Mazharul Islam Mondal, Matthew Matzelle, Iftakhar Bin Elius, Nathan Valadez, David G. Mandrus, Arun Bansil, Madhab Neupane","doi":"10.1038/s43246-024-00681-3","DOIUrl":"10.1038/s43246-024-00681-3","url":null,"abstract":"Kagome lattices have emerged as an ideal platform for exploring exotic quantum phenomena in materials. Here, we report the discovery of Ti-based kagome metal YbTi3Bi4 which we characterize using angle-resolved photoemission spectroscopy (ARPES) and magneto-transport, in combination with density functional theory calculations. Our ARPES results reveal the complex fermiology of YbTi3Bi4 and provide spectroscopic evidence of four flat bands. Our measurements also show the presence of multiple van Hove singularities originating from Ti 3d orbitals and a linearly-dispersing gapped Dirac-like bulk state at the $$overline{,{mbox{K}},}$$ point in accord with our theoretical calculations. Our study establishes YbTi3Bi4 as a platform for exploring exotic phases in the wider LnTi3Bi4 (Ln = lanthanide) family of materials. Kagome lattices have emerged as an ideal platform for exploring exotic quantum phenomena in materials. Here, the discovery of a Ti-based kagome metal YbTi3Bi4 is reported, showing spectroscopic evidence of four flat bands originating from both Yb 4f and Ti 3d orbitals, multiple van Hove singularities, and a linearly dispersing gapped Dirac-like bulk state.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-7"},"PeriodicalIF":7.5,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00681-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probing the limits for coherent optical control of a mechanically decoupled defect center in hexagonal boron nitride 探测六方氮化硼中机械解耦缺陷中心的相干光控制极限
IF 7.5
Communications Materials Pub Date : 2024-11-03 DOI: 10.1038/s43246-024-00686-y
Michael K. Koch, Vibhav Bharadwaj, Alexander Kubanek
{"title":"Probing the limits for coherent optical control of a mechanically decoupled defect center in hexagonal boron nitride","authors":"Michael K. Koch, Vibhav Bharadwaj, Alexander Kubanek","doi":"10.1038/s43246-024-00686-y","DOIUrl":"10.1038/s43246-024-00686-y","url":null,"abstract":"The coherent control of a two-level system is among the most essential challenges in modern quantum optics. Understanding its fundamental limitations is crucial, also for the realization of next generation quantum devices. The quantum coherence of a two-level system is fragile in particular, when the two levels are connected via an optical transition, which, at the same time, enables the manipulation of the system. When such quantum emitters are located in solids the coherence suffers from the interaction of the optical transition with the solid state environment, which requires the sample to be cooled to temperatures of a few Kelvin or below. Here, we use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive. We operate the system at the threshold where the mechanical isolation collapses in order to study the onset and temperature-dependence of dephasing and independently of spectral diffusion. The insights on the underlying physical decoherence mechanisms reveal a limit in temperature until which coherent driving of the system is possible. This study enables to increase the operation temperature of hBN-based quantum devices, therefore reducing the need for cryogenic cooling. The coherent control of a two-level system is at the core of quantum devices and understanding decoherence mechanisms is crucial for increasing their operating temperatures. Here, a mechanically isolated quantum emitter in hexagonal boron nitride is used to explore the individual mechanisms affecting the coherence of an optical transition under resonant drive.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-7"},"PeriodicalIF":7.5,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00686-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Giant antisymmetric magnetoresistance arising across optically controlled domain walls in the magnetic Weyl semimetal Co3Sn2S2 磁性韦尔半金属 Co3Sn2S2 中光学控制畴壁产生的巨大反对称磁阻
IF 7.5
Communications Materials Pub Date : 2024-11-02 DOI: 10.1038/s43246-024-00688-w
Kohei Fujiwara, Kazuma Ogawa, Naotaka Yoshikawa, Koji Kobayashi, Kentaro Nomura, Ryo Shimano, Atsushi Tsukazaki
{"title":"Giant antisymmetric magnetoresistance arising across optically controlled domain walls in the magnetic Weyl semimetal Co3Sn2S2","authors":"Kohei Fujiwara, Kazuma Ogawa, Naotaka Yoshikawa, Koji Kobayashi, Kentaro Nomura, Ryo Shimano, Atsushi Tsukazaki","doi":"10.1038/s43246-024-00688-w","DOIUrl":"10.1038/s43246-024-00688-w","url":null,"abstract":"Domain walls (DWs) in magnetic materials host various interesting magneto-transport phenomena. Recent theoretical proposals focusing on DWs of magnetic Weyl semimetals (mWSMs) suggest the emergence of even more exotic transport owing to topologically protected Weyl domains with opposite chirality. However, techniques for controlling and characterizing DWs in mWSMs have not yet matured sufficiently to identify the distinct features of electrical conduction on DWs. Here, by adopting an optical technique to manipulate magnetic domains in mWSM Co3Sn2S2 Hall-bar devices, we discover giant antisymmetric magnetoresistance arising across a DW formed by serially connected upward- and downward-magnetized Weyl domains. This phenomenon originates from the large tangent of the Hall angle associated with the intrinsic anomalous Hall effect in the oppositely magnetized Weyl domains. Furthermore, we quantitatively evaluate DW resistance by systematically controlling the number of DWs. These results underscore the promising avenue of Weyl DW engineering for advanced research on topological magnets. Domain walls in magnetic Weyl semimetals are a source of exotic transport owing to topologically protected domains with opposite chirality. Here, utilizing an optical technique to manipulate magnetic domains in Co3Sn2S2 Hall-bar devices, the authors discover giant antisymmetric magnetoresistance across a domain wall formed by serially connected upward- and downward-magnetized Weyl domains.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-6"},"PeriodicalIF":7.5,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00688-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Face-centered cubic carbon as a fourth basic carbon allotrope with properties of intrinsic semiconductors and ultra-wide bandgap 作者更正:面心立方碳是具有本征半导体特性和超宽带隙的第四种基本碳同素异形体
IF 7.5
Communications Materials Pub Date : 2024-10-31 DOI: 10.1038/s43246-024-00683-1
Igor Konyashin, Ruslan Muydinov, Antonio Cammarata, Andrey Bondarev, Marin Rusu, Athanasios Koliogiorgos, Tomáš Polcar, Daniel Twitchen, Pierre-Olivier Colard, Bernd Szyszka, Nicola Palmer
{"title":"Author Correction: Face-centered cubic carbon as a fourth basic carbon allotrope with properties of intrinsic semiconductors and ultra-wide bandgap","authors":"Igor Konyashin, Ruslan Muydinov, Antonio Cammarata, Andrey Bondarev, Marin Rusu, Athanasios Koliogiorgos, Tomáš Polcar, Daniel Twitchen, Pierre-Olivier Colard, Bernd Szyszka, Nicola Palmer","doi":"10.1038/s43246-024-00683-1","DOIUrl":"10.1038/s43246-024-00683-1","url":null,"abstract":"","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-1"},"PeriodicalIF":7.5,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00683-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Achieving liquid processors by colloidal suspensions for reservoir computing 作者更正:通过胶体悬浮实现液体处理器,用于水库计算
IF 7.5
Communications Materials Pub Date : 2024-10-31 DOI: 10.1038/s43246-024-00685-z
Raphael Fortulan, Noushin Raeisi Kheirabadi, Alessandro Chiolerio, Andrew Adamatzky
{"title":"Author Correction: Achieving liquid processors by colloidal suspensions for reservoir computing","authors":"Raphael Fortulan, Noushin Raeisi Kheirabadi, Alessandro Chiolerio, Andrew Adamatzky","doi":"10.1038/s43246-024-00685-z","DOIUrl":"10.1038/s43246-024-00685-z","url":null,"abstract":"","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-1"},"PeriodicalIF":7.5,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00685-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microscopic analysis of low but stable perovskite solar cell device performance using electron spin resonance 利用电子自旋共振对低性能但稳定的过氧化物太阳能电池装置进行微观分析
IF 7.5
Communications Materials Pub Date : 2024-10-24 DOI: 10.1038/s43246-024-00675-1
Xiangtao Zou, Takahiro Watanabe, Haru Kimata, Dong Xue, Ai Shimazaki, Minh Anh Truong, Atsushi Wakamiya, Kazuhiro Marumoto
{"title":"Microscopic analysis of low but stable perovskite solar cell device performance using electron spin resonance","authors":"Xiangtao Zou, Takahiro Watanabe, Haru Kimata, Dong Xue, Ai Shimazaki, Minh Anh Truong, Atsushi Wakamiya, Kazuhiro Marumoto","doi":"10.1038/s43246-024-00675-1","DOIUrl":"10.1038/s43246-024-00675-1","url":null,"abstract":"Perovskite solar cells have attracted much attention as next-generation solar cells. However, a typical hole-transport material, spiro-OMeTAD, has associated difficulties including tedious synthesis and high cost. To overcome these shortcomings, an easily synthesized and low-cost hole-transport material has been developed: HND-2NOMe. Although HND-2NOMe has high local charge mobility because of the quasi-planar structure, its lower device performance is a weak point, the cause of which has not yet been clarified. Here, we analyse the source of the lower performance by clarifying the internal states from a microscopic viewpoint using electron spin resonance. We observe hole diffusion from perovskite to HND-2NOMe under dark conditions, indicating hole barrier formation at the perovskite/HND-2NOMe interface, leading to lower performance. Although such a barrier is formed, less hole accumulation for the HND-2NOMe-based cells under solar irradiation occurs, which is related to the stable performance. The sources of the lower but stable performance are crucially important for providing guidelines for improving the device performance. Hole-transport materials possessing high charge mobility are important in perovskite solar cells but the source of lower performance remains a mystery. Here, the microscopic mechanism for low but stable perovskite solar cell performance using these materials is analysed using electron spin resonance.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-12"},"PeriodicalIF":7.5,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00675-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Observation of converse flexoelectric effect in topological semimetals 观察拓扑半金属中的反向柔电效应
IF 7.5
Communications Materials Pub Date : 2024-10-24 DOI: 10.1038/s43246-024-00677-z
Hidefumi Takahashi, Yusuke Kurosaka, Kenta Kimura, Akitoshi Nakano, Shintaro Ishiwata
{"title":"Observation of converse flexoelectric effect in topological semimetals","authors":"Hidefumi Takahashi, Yusuke Kurosaka, Kenta Kimura, Akitoshi Nakano, Shintaro Ishiwata","doi":"10.1038/s43246-024-00677-z","DOIUrl":"10.1038/s43246-024-00677-z","url":null,"abstract":"A strong coupling between electric polarization and elastic deformation in solids is an important factor in creating useful electromechanical nanodevices. Such coupling is typically allowed in insulating materials with inversion symmetry breaking as exemplified by the piezoelectric effect in ferroelectric materials. Therefore, materials with metallicity and centrosymmetry have tended to be out of scope in this perspective. Here, we report the observation of giant elastic deformation by the application of an alternating electric current in topological semimetals (V,Mo)Te2, regardless of the centrosymmetry. Considering the crystal and band structures and the asymmetric measurement configurations in addition to the absence of the electromechanical effect in a trivial semimetal TiTe2, the observed effect is discussed in terms of a Berry-phase-derived converse flexoelectric effect in metals. The observation of the flexoelectric effect in topological semimetals paves a way for a new type of nanoscale electromechanical sensors and energy harvesting. A strong coupling between electric polarization and elastic deformation is important for creating electromechanical nanodevices, but such coupling typically requires inversion symmetry breaking and is elusive in metals. Here, a current-induced giant elastic deformation is reported in topological semimetals VTe2 and MoTe2, regardless of centrosymmetry, due to the Berry phase enhancement of the flexoelectric response.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-6"},"PeriodicalIF":7.5,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00677-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Substantial enhancement of perpendicular magnetic anisotropy in van der Waals ferromagnetic Fe3GaTe2 film due to pressure application 施压导致范德华铁磁性 Fe3GaTe2 薄膜中垂直磁各向异性的大幅增强
IF 7.5
Communications Materials Pub Date : 2024-10-22 DOI: 10.1038/s43246-024-00665-3
Riku Iimori, Shaojie Hu, Akihiro Mitsuda, Takashi Kimura
{"title":"Substantial enhancement of perpendicular magnetic anisotropy in van der Waals ferromagnetic Fe3GaTe2 film due to pressure application","authors":"Riku Iimori, Shaojie Hu, Akihiro Mitsuda, Takashi Kimura","doi":"10.1038/s43246-024-00665-3","DOIUrl":"10.1038/s43246-024-00665-3","url":null,"abstract":"Van der Waals (vdW) two-dimensional (2D) materials have unleashed unprecedented opportunities to probe emerging physics that could be potential candidates for various functional applications. In particular, vdW 2D magnetic materials exhibit significant potential for advanced spintronic devices. Recently, Fe3GaTe2 has been discovered to possess the room-temperature ferromagnetic property with an intrinsic perpendicular magnetic anisotropy (PMA). Furthermore, considerably large anomalous Hall and Nernst angles have been reported recently. These groundbreaking findings pave the way for significant advances in high density random-access memory as well as energy harvesting devices based on spin conversion. Enhancements in the PMA and Curie temperature contribute to improved performance with reliable operation in a wide temperature range above room temperature. Moreover, the exploration of giant anomalous Hall and Nernst angles is a crucial factor for the efficient operation of spintronic devices. In this study, we demonstrate that the application of pressure to the Fe3GaTe2 2D ferromagnetic film strengthens the interlayer coupling, resulting in an improved PMA property. In addition, the application of pressure has been found to significantly increase the anomalous Hall angle. Our findings suggest that the application of pressure effectively controls the vdW interlayer coupling, thereby manipulating the ferromagnetic and spin-conversion properties of the 2D materials. Van der Waals 2D magnetic materials are promising for spintronic devices due to their tunable large anomalous Hall and Nernst angles. Here, the magneto-transport properties of Fe3GaTe2 films are investigated under pressure, demonstrating a robust perpendicular magnetic anisotropy at room temperature and an enhancement of the anomalous Hall angle.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-7"},"PeriodicalIF":7.5,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00665-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phonon collapse and anharmonic melting of the 3D charge-density wave in kagome metals 神户金属中三维电荷密度波的声子塌缩和非谐波熔化
IF 7.5
Communications Materials Pub Date : 2024-10-21 DOI: 10.1038/s43246-024-00676-0
Martin Gutierrez-Amigo, Ðorđe Dangić, Chunyu Guo, Claudia Felser, Philip J. W. Moll, Maia G. Vergniory, Ion Errea
{"title":"Phonon collapse and anharmonic melting of the 3D charge-density wave in kagome metals","authors":"Martin Gutierrez-Amigo, Ðorđe Dangić, Chunyu Guo, Claudia Felser, Philip J. W. Moll, Maia G. Vergniory, Ion Errea","doi":"10.1038/s43246-024-00676-0","DOIUrl":"10.1038/s43246-024-00676-0","url":null,"abstract":"The charge-density wave (CDW) mechanism and resulting structure of the AV3Sb5 family of kagome metals has posed a puzzling challenge since their discovery four years ago. In fact, the lack of consensus on the origin and structure of the CDW hinders the understanding of the emerging phenomena. Here, by employing a non-perturbative treatment of anharmonicity from first-principles calculations, we reveal that the charge-density transition in CsV3Sb5 is driven by the large electron-phonon coupling of the material and that the melting of the CDW state is attributed to ionic entropy and lattice anharmonicity. The calculated transition temperature is in very good agreement with experiments, implying that soft mode physics are at the core of the charge-density wave transition. Contrary to the standard assumption associated with a pure kagome lattice, the CDW is essentially three-dimensional as it is triggered by an unstable phonon at the L point. The absence of involvement of phonons at the M point enables us to constrain the resulting symmetries to six possible space groups. The unusually large electron-phonon linewidth of the soft mode explains why inelastic scattering experiments did not observe any softened phonon. We foresee that large anharmonic effects are ubiquitous and could be fundamental to understand the observed phenomena also in other kagome families. The charge-density wave state in AV3Sb5 kagome metals is intimately related to several unconventional and intriguing phenomena, but its origin and structure are still under debate. Here, non-perturbative calculations indicate a large electron-phonon coupling as the driving mechanism, attributing the melting of the charge-density wave state to ionic entropy and lattice anharmonicity.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-8"},"PeriodicalIF":7.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00676-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信