Stratification of fluoride uptake among enamel crystals with age elucidated by atom probe tomography

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jack R. Grimm, Cameron Renteria, Semanti Mukhopadhyay, Arun Devaraj, Dwayne D. Arola
{"title":"Stratification of fluoride uptake among enamel crystals with age elucidated by atom probe tomography","authors":"Jack R. Grimm, Cameron Renteria, Semanti Mukhopadhyay, Arun Devaraj, Dwayne D. Arola","doi":"10.1038/s43246-024-00709-8","DOIUrl":null,"url":null,"abstract":"Dental enamel is subjected to a lifetime of de- and re-mineralization cycles in the oral environment, the cumulative effects of which cause embrittlement with age. However, the understanding of atomic scale mechanisms of dental enamel aging is still at its infancy, particularly regarding where compositional differences occur in the hydroxyapatite nanocrystals and what underlying mechanisms might be responsible. Here, we use atom probe tomography to compare enamel from a young (22 years old) and a senior (56 years old) adult donor tooth. Findings reveal that the concentration of fluorine is elevated in the shells of senior nanocrystals relative to young, with less significant differences between the cores or intergranular phases. It is proposed that the embrittlement of enamel is driven, at least in part, by the infusion of fluorine into the nanocrystals and that the principal mechanism is de- and re-mineralization cycles that preferentially erode and rebuild the nanocrystals shells. The atomic scale mechanisms of dental enamel aging are still not well understood. Here, atom probe tomography was used to compare enamel from young and senior adults to give insight about fluorine concentration in tooth nanocrystals.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-8"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00709-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00709-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dental enamel is subjected to a lifetime of de- and re-mineralization cycles in the oral environment, the cumulative effects of which cause embrittlement with age. However, the understanding of atomic scale mechanisms of dental enamel aging is still at its infancy, particularly regarding where compositional differences occur in the hydroxyapatite nanocrystals and what underlying mechanisms might be responsible. Here, we use atom probe tomography to compare enamel from a young (22 years old) and a senior (56 years old) adult donor tooth. Findings reveal that the concentration of fluorine is elevated in the shells of senior nanocrystals relative to young, with less significant differences between the cores or intergranular phases. It is proposed that the embrittlement of enamel is driven, at least in part, by the infusion of fluorine into the nanocrystals and that the principal mechanism is de- and re-mineralization cycles that preferentially erode and rebuild the nanocrystals shells. The atomic scale mechanisms of dental enamel aging are still not well understood. Here, atom probe tomography was used to compare enamel from young and senior adults to give insight about fluorine concentration in tooth nanocrystals.

Abstract Image

原子探针断层扫描法阐明珐琅质晶体对氟的吸收随年龄而分层
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信