Jack R. Grimm, Cameron Renteria, Semanti Mukhopadhyay, Arun Devaraj, Dwayne D. Arola
{"title":"Stratification of fluoride uptake among enamel crystals with age elucidated by atom probe tomography","authors":"Jack R. Grimm, Cameron Renteria, Semanti Mukhopadhyay, Arun Devaraj, Dwayne D. Arola","doi":"10.1038/s43246-024-00709-8","DOIUrl":null,"url":null,"abstract":"Dental enamel is subjected to a lifetime of de- and re-mineralization cycles in the oral environment, the cumulative effects of which cause embrittlement with age. However, the understanding of atomic scale mechanisms of dental enamel aging is still at its infancy, particularly regarding where compositional differences occur in the hydroxyapatite nanocrystals and what underlying mechanisms might be responsible. Here, we use atom probe tomography to compare enamel from a young (22 years old) and a senior (56 years old) adult donor tooth. Findings reveal that the concentration of fluorine is elevated in the shells of senior nanocrystals relative to young, with less significant differences between the cores or intergranular phases. It is proposed that the embrittlement of enamel is driven, at least in part, by the infusion of fluorine into the nanocrystals and that the principal mechanism is de- and re-mineralization cycles that preferentially erode and rebuild the nanocrystals shells. The atomic scale mechanisms of dental enamel aging are still not well understood. Here, atom probe tomography was used to compare enamel from young and senior adults to give insight about fluorine concentration in tooth nanocrystals.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-8"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00709-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00709-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Dental enamel is subjected to a lifetime of de- and re-mineralization cycles in the oral environment, the cumulative effects of which cause embrittlement with age. However, the understanding of atomic scale mechanisms of dental enamel aging is still at its infancy, particularly regarding where compositional differences occur in the hydroxyapatite nanocrystals and what underlying mechanisms might be responsible. Here, we use atom probe tomography to compare enamel from a young (22 years old) and a senior (56 years old) adult donor tooth. Findings reveal that the concentration of fluorine is elevated in the shells of senior nanocrystals relative to young, with less significant differences between the cores or intergranular phases. It is proposed that the embrittlement of enamel is driven, at least in part, by the infusion of fluorine into the nanocrystals and that the principal mechanism is de- and re-mineralization cycles that preferentially erode and rebuild the nanocrystals shells. The atomic scale mechanisms of dental enamel aging are still not well understood. Here, atom probe tomography was used to compare enamel from young and senior adults to give insight about fluorine concentration in tooth nanocrystals.
期刊介绍:
Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.