Automated chain architecture screening for discovery of block copolymer assembly with graph enhanced self-consistent field theory

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yuchen Zhang, Weiling Huang, Yi-Xin Liu
{"title":"Automated chain architecture screening for discovery of block copolymer assembly with graph enhanced self-consistent field theory","authors":"Yuchen Zhang, Weiling Huang, Yi-Xin Liu","doi":"10.1038/s43246-024-00723-w","DOIUrl":null,"url":null,"abstract":"The diverse chain architectures of block copolymers makes them important for exploring new self-assembly, but poses significant challenges for identifying the stability windows of desired mesophases within the vast parameter space. Here, we present an automated workflow for screening chain architectures to discover new self-assembly. Utilizing graph-enhanced self-consistent field theory complemented by a scattering-based identification strategy, our approach enables the automated computation of arbitrary chain architectures and their phase behavior. This framework successfully identifies stable windows for a novel PtS phase in AB-type block copolymer melts, with two distinct chain architectures emerging from the screening process. Our findings demonstrate the utility of this method in stabilizing desired self-assembly and exploring new mesophases. The flexibility of our approach allows for straightforward extension to multi-species and multi-component systems and further integration with metaheuristic optimization techniques to enhance its potential for materials design. Block copolymers have diverse chain architectures which self-assemble in many ways makes it difficult to identify the stability windows of the mesophases. Here, an automated workflow using graph-enhanced self-consistent field theory allows for computation of arbitrary chain architectures and their phase behavior.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-7"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00723-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00723-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The diverse chain architectures of block copolymers makes them important for exploring new self-assembly, but poses significant challenges for identifying the stability windows of desired mesophases within the vast parameter space. Here, we present an automated workflow for screening chain architectures to discover new self-assembly. Utilizing graph-enhanced self-consistent field theory complemented by a scattering-based identification strategy, our approach enables the automated computation of arbitrary chain architectures and their phase behavior. This framework successfully identifies stable windows for a novel PtS phase in AB-type block copolymer melts, with two distinct chain architectures emerging from the screening process. Our findings demonstrate the utility of this method in stabilizing desired self-assembly and exploring new mesophases. The flexibility of our approach allows for straightforward extension to multi-species and multi-component systems and further integration with metaheuristic optimization techniques to enhance its potential for materials design. Block copolymers have diverse chain architectures which self-assemble in many ways makes it difficult to identify the stability windows of the mesophases. Here, an automated workflow using graph-enhanced self-consistent field theory allows for computation of arbitrary chain architectures and their phase behavior.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信