The role of redox and structure on grain growth in Mn-doped UO2

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Gabriel L. Murphy, Elena Bazarkina, André Rossberg, Clara L. Silva, Lucia Amidani, Andrey Bukaemskiy, Robert Thümmler, Martina Klinkenberg, Maximilian Henkes, Julien Marquardt, Jessica Lessing, Volodymyr Svitlyk, Christoph Hennig, Kristina O. Kvashnina, Nina Huittinen
{"title":"The role of redox and structure on grain growth in Mn-doped UO2","authors":"Gabriel L. Murphy, Elena Bazarkina, André Rossberg, Clara L. Silva, Lucia Amidani, Andrey Bukaemskiy, Robert Thümmler, Martina Klinkenberg, Maximilian Henkes, Julien Marquardt, Jessica Lessing, Volodymyr Svitlyk, Christoph Hennig, Kristina O. Kvashnina, Nina Huittinen","doi":"10.1038/s43246-024-00714-x","DOIUrl":null,"url":null,"abstract":"Mn-doped UO2 is considered a potential advanced nuclear fuel due to ameliorated microstructural grain growth compared to non-doped variants. However, recent experimental investigations have highlighted limitations in grain growth apparently arising from misunderstandings of its redox-structural chemistry. To resolve this, we use synchrotron X-ray diffraction and spectroscopy measurements supported by ab initio calculations to cross-examine the redox and structural chemistry of Mn-doped UO2 single crystal grains and ceramic specimens. Measurements reveal Mn enters the UO2 matrix divalently as $$({{{Mn}}}_{x}^{+2}{{U}}_{1-x}^{+4}){{O}_{2-x}}$$ with the additional formation of fluorite Mn+2O in the bulk material. Extended X-ray absorption near edge structure measurements unveil that during sintering, the isostructural relationship between fluorite UO2 and Mn+2O results in inadvertent interaction and subsequent incorporation of diffusing U species within MnO, rather than neighbouring UO2 grains, inhibiting grain growth. The investigation consequently highlights the significance of considering total redox-structural chemistry of main and minor phases in advanced ceramic material design. Mn-doped UO2 is a promising nuclear fuel, and is predicted to undergo favourable grain growth during service. This study uses diffraction, spectroscopy and ab initio calculations to study the effect of redox and structure, finding that grain growth may in fact be suppressed.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-12"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00714-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00714-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mn-doped UO2 is considered a potential advanced nuclear fuel due to ameliorated microstructural grain growth compared to non-doped variants. However, recent experimental investigations have highlighted limitations in grain growth apparently arising from misunderstandings of its redox-structural chemistry. To resolve this, we use synchrotron X-ray diffraction and spectroscopy measurements supported by ab initio calculations to cross-examine the redox and structural chemistry of Mn-doped UO2 single crystal grains and ceramic specimens. Measurements reveal Mn enters the UO2 matrix divalently as $$({{{Mn}}}_{x}^{+2}{{U}}_{1-x}^{+4}){{O}_{2-x}}$$ with the additional formation of fluorite Mn+2O in the bulk material. Extended X-ray absorption near edge structure measurements unveil that during sintering, the isostructural relationship between fluorite UO2 and Mn+2O results in inadvertent interaction and subsequent incorporation of diffusing U species within MnO, rather than neighbouring UO2 grains, inhibiting grain growth. The investigation consequently highlights the significance of considering total redox-structural chemistry of main and minor phases in advanced ceramic material design. Mn-doped UO2 is a promising nuclear fuel, and is predicted to undergo favourable grain growth during service. This study uses diffraction, spectroscopy and ab initio calculations to study the effect of redox and structure, finding that grain growth may in fact be suppressed.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信