Gabriel L. Murphy, Elena Bazarkina, André Rossberg, Clara L. Silva, Lucia Amidani, Andrey Bukaemskiy, Robert Thümmler, Martina Klinkenberg, Maximilian Henkes, Julien Marquardt, Jessica Lessing, Volodymyr Svitlyk, Christoph Hennig, Kristina O. Kvashnina, Nina Huittinen
{"title":"The role of redox and structure on grain growth in Mn-doped UO2","authors":"Gabriel L. Murphy, Elena Bazarkina, André Rossberg, Clara L. Silva, Lucia Amidani, Andrey Bukaemskiy, Robert Thümmler, Martina Klinkenberg, Maximilian Henkes, Julien Marquardt, Jessica Lessing, Volodymyr Svitlyk, Christoph Hennig, Kristina O. Kvashnina, Nina Huittinen","doi":"10.1038/s43246-024-00714-x","DOIUrl":null,"url":null,"abstract":"Mn-doped UO2 is considered a potential advanced nuclear fuel due to ameliorated microstructural grain growth compared to non-doped variants. However, recent experimental investigations have highlighted limitations in grain growth apparently arising from misunderstandings of its redox-structural chemistry. To resolve this, we use synchrotron X-ray diffraction and spectroscopy measurements supported by ab initio calculations to cross-examine the redox and structural chemistry of Mn-doped UO2 single crystal grains and ceramic specimens. Measurements reveal Mn enters the UO2 matrix divalently as $$({{{Mn}}}_{x}^{+2}{{U}}_{1-x}^{+4}){{O}_{2-x}}$$ with the additional formation of fluorite Mn+2O in the bulk material. Extended X-ray absorption near edge structure measurements unveil that during sintering, the isostructural relationship between fluorite UO2 and Mn+2O results in inadvertent interaction and subsequent incorporation of diffusing U species within MnO, rather than neighbouring UO2 grains, inhibiting grain growth. The investigation consequently highlights the significance of considering total redox-structural chemistry of main and minor phases in advanced ceramic material design. Mn-doped UO2 is a promising nuclear fuel, and is predicted to undergo favourable grain growth during service. This study uses diffraction, spectroscopy and ab initio calculations to study the effect of redox and structure, finding that grain growth may in fact be suppressed.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-12"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00714-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00714-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Mn-doped UO2 is considered a potential advanced nuclear fuel due to ameliorated microstructural grain growth compared to non-doped variants. However, recent experimental investigations have highlighted limitations in grain growth apparently arising from misunderstandings of its redox-structural chemistry. To resolve this, we use synchrotron X-ray diffraction and spectroscopy measurements supported by ab initio calculations to cross-examine the redox and structural chemistry of Mn-doped UO2 single crystal grains and ceramic specimens. Measurements reveal Mn enters the UO2 matrix divalently as $$({{{Mn}}}_{x}^{+2}{{U}}_{1-x}^{+4}){{O}_{2-x}}$$ with the additional formation of fluorite Mn+2O in the bulk material. Extended X-ray absorption near edge structure measurements unveil that during sintering, the isostructural relationship between fluorite UO2 and Mn+2O results in inadvertent interaction and subsequent incorporation of diffusing U species within MnO, rather than neighbouring UO2 grains, inhibiting grain growth. The investigation consequently highlights the significance of considering total redox-structural chemistry of main and minor phases in advanced ceramic material design. Mn-doped UO2 is a promising nuclear fuel, and is predicted to undergo favourable grain growth during service. This study uses diffraction, spectroscopy and ab initio calculations to study the effect of redox and structure, finding that grain growth may in fact be suppressed.
期刊介绍:
Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.