The role of redox and structure on grain growth in Mn-doped UO2

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Gabriel L. Murphy, Elena Bazarkina, André Rossberg, Clara L. Silva, Lucia Amidani, Andrey Bukaemskiy, Robert Thümmler, Martina Klinkenberg, Maximilian Henkes, Julien Marquardt, Jessica Lessing, Volodymyr Svitlyk, Christoph Hennig, Kristina O. Kvashnina, Nina Huittinen
{"title":"The role of redox and structure on grain growth in Mn-doped UO2","authors":"Gabriel L. Murphy, Elena Bazarkina, André Rossberg, Clara L. Silva, Lucia Amidani, Andrey Bukaemskiy, Robert Thümmler, Martina Klinkenberg, Maximilian Henkes, Julien Marquardt, Jessica Lessing, Volodymyr Svitlyk, Christoph Hennig, Kristina O. Kvashnina, Nina Huittinen","doi":"10.1038/s43246-024-00714-x","DOIUrl":null,"url":null,"abstract":"Mn-doped UO2 is considered a potential advanced nuclear fuel due to ameliorated microstructural grain growth compared to non-doped variants. However, recent experimental investigations have highlighted limitations in grain growth apparently arising from misunderstandings of its redox-structural chemistry. To resolve this, we use synchrotron X-ray diffraction and spectroscopy measurements supported by ab initio calculations to cross-examine the redox and structural chemistry of Mn-doped UO2 single crystal grains and ceramic specimens. Measurements reveal Mn enters the UO2 matrix divalently as $$({{{Mn}}}_{x}^{+2}{{U}}_{1-x}^{+4}){{O}_{2-x}}$$ with the additional formation of fluorite Mn+2O in the bulk material. Extended X-ray absorption near edge structure measurements unveil that during sintering, the isostructural relationship between fluorite UO2 and Mn+2O results in inadvertent interaction and subsequent incorporation of diffusing U species within MnO, rather than neighbouring UO2 grains, inhibiting grain growth. The investigation consequently highlights the significance of considering total redox-structural chemistry of main and minor phases in advanced ceramic material design. Mn-doped UO2 is a promising nuclear fuel, and is predicted to undergo favourable grain growth during service. This study uses diffraction, spectroscopy and ab initio calculations to study the effect of redox and structure, finding that grain growth may in fact be suppressed.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-12"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00714-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00714-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mn-doped UO2 is considered a potential advanced nuclear fuel due to ameliorated microstructural grain growth compared to non-doped variants. However, recent experimental investigations have highlighted limitations in grain growth apparently arising from misunderstandings of its redox-structural chemistry. To resolve this, we use synchrotron X-ray diffraction and spectroscopy measurements supported by ab initio calculations to cross-examine the redox and structural chemistry of Mn-doped UO2 single crystal grains and ceramic specimens. Measurements reveal Mn enters the UO2 matrix divalently as $$({{{Mn}}}_{x}^{+2}{{U}}_{1-x}^{+4}){{O}_{2-x}}$$ with the additional formation of fluorite Mn+2O in the bulk material. Extended X-ray absorption near edge structure measurements unveil that during sintering, the isostructural relationship between fluorite UO2 and Mn+2O results in inadvertent interaction and subsequent incorporation of diffusing U species within MnO, rather than neighbouring UO2 grains, inhibiting grain growth. The investigation consequently highlights the significance of considering total redox-structural chemistry of main and minor phases in advanced ceramic material design. Mn-doped UO2 is a promising nuclear fuel, and is predicted to undergo favourable grain growth during service. This study uses diffraction, spectroscopy and ab initio calculations to study the effect of redox and structure, finding that grain growth may in fact be suppressed.

Abstract Image

氧化还原和结构对mn掺杂UO2晶粒生长的影响
由于与未掺杂的UO2相比,mn掺杂的UO2改善了微观结构晶粒的生长,因此被认为是一种潜在的先进核燃料。然而,最近的实验研究突出了晶粒生长的局限性,这显然是由于对其氧化还原结构化学的误解。为了解决这个问题,我们使用同步加速器x射线衍射和从头计算支持的光谱测量来交叉检验mn掺杂UO2单晶颗粒和陶瓷样品的氧化还原和结构化学。测量结果显示,Mn以二价形式进入UO2基体$$({{{Mn}}}_{x}^{+2}{{U}}_{1-x}^{+4}){{O}_{2-x}}$$,同时在大块材料中形成萤石Mn+2O。扩展的x射线吸收近边结构测量揭示,在烧结过程中,萤石UO2和Mn+2O之间的等结构关系导致无意的相互作用,随后在MnO中加入扩散的U物质,而不是邻近的UO2晶粒,从而抑制了晶粒的生长。研究结果强调了在高级陶瓷材料设计中考虑主要相和次要相的总氧化还原结构化学的重要性。mn掺杂UO2是一种很有前途的核燃料,预计在服役期间会有良好的晶粒生长。本研究利用衍射、光谱学和从头计算研究氧化还原和结构的影响,发现实际上可能抑制了晶粒的生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信