Karina Hemmer, Hanna L. B. Boström, Simon Krause, Bettina V. Lotsch, Roland A. Fischer
{"title":"Strategies to achieve reproducible synthesis of phase-pure Zr-porphyrin metal-organic frameworks","authors":"Karina Hemmer, Hanna L. B. Boström, Simon Krause, Bettina V. Lotsch, Roland A. Fischer","doi":"10.1038/s43246-024-00690-2","DOIUrl":null,"url":null,"abstract":"Porphyrin-based metal-organic frameworks (MOFs) are gaining traction for various applications due to their sorption, optoelectronic and catalytic properties. MOFs with Zr-based nodes constitute a particularly robust and versatile class of MOFs in which incorporation of metals into the porphyrin core allows further tuning of their physico-chemical properties. However, significant challenges regarding the phase-pure synthesis of Zr-porphyrin MOFs have slowed down progress in the field. Synthetic challenges in targeted phase formation originate from the densely populated phase space, due to energetically similar framework topologies accessible from the same building blocks, but also from the lack of detailed synthetic information. This Perspective discusses different synthetic approaches and detailed synthesis investigations to gain a deeper understanding while providing strategies towards suitable conditions to access phase-pure Zr-porphyrin MOFs. Transparent data reporting and holistic consideration of synthetic factors may allow for better control of these aspects. This is crucial for the establishment of structure–property relationships in such materials and will facilitate the realisation of their application potential. Synthesizing phase-pure zirconium-porphyrin metal-organic frameworks is challenging. This Perspective discusses different synthetic approaches and investigations to guide conditions to achieve phase-pure zirconium-porphyrin metal-organic frameworks.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-9"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00690-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00690-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Porphyrin-based metal-organic frameworks (MOFs) are gaining traction for various applications due to their sorption, optoelectronic and catalytic properties. MOFs with Zr-based nodes constitute a particularly robust and versatile class of MOFs in which incorporation of metals into the porphyrin core allows further tuning of their physico-chemical properties. However, significant challenges regarding the phase-pure synthesis of Zr-porphyrin MOFs have slowed down progress in the field. Synthetic challenges in targeted phase formation originate from the densely populated phase space, due to energetically similar framework topologies accessible from the same building blocks, but also from the lack of detailed synthetic information. This Perspective discusses different synthetic approaches and detailed synthesis investigations to gain a deeper understanding while providing strategies towards suitable conditions to access phase-pure Zr-porphyrin MOFs. Transparent data reporting and holistic consideration of synthetic factors may allow for better control of these aspects. This is crucial for the establishment of structure–property relationships in such materials and will facilitate the realisation of their application potential. Synthesizing phase-pure zirconium-porphyrin metal-organic frameworks is challenging. This Perspective discusses different synthetic approaches and investigations to guide conditions to achieve phase-pure zirconium-porphyrin metal-organic frameworks.
期刊介绍:
Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.