Photocontrol of ferroelectricity in multiferroic BiFeO3 via structural modification coupled with photocarrier

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kou Takubo, Atsushi Ono, Shunsuke Ueno, Samiran Banu, Hongwu Yu, Kaito En-ya, Ryota Nishimori, Makoto Kuwahara, Toru Asaka, Kei Maeda, Daiki Ono, Keita Ozawa, Takuma Itoh, Kei Shigematsu, Masaki Azuma, Tadahiko Ishikawa, Yoichi Okimoto, Masaki Hada, Shin-ya Koshihara
{"title":"Photocontrol of ferroelectricity in multiferroic BiFeO3 via structural modification coupled with photocarrier","authors":"Kou Takubo, Atsushi Ono, Shunsuke Ueno, Samiran Banu, Hongwu Yu, Kaito En-ya, Ryota Nishimori, Makoto Kuwahara, Toru Asaka, Kei Maeda, Daiki Ono, Keita Ozawa, Takuma Itoh, Kei Shigematsu, Masaki Azuma, Tadahiko Ishikawa, Yoichi Okimoto, Masaki Hada, Shin-ya Koshihara","doi":"10.1038/s43246-024-00698-8","DOIUrl":null,"url":null,"abstract":"Ultrafast control of ferroelectricity and magnetism by light is essential for future development in multiple functioning devices. Here, we demonstrate that the intense and ultrafast photo-modulation of the electric dipole can be realized by photocarrier injection into a multiferroic BiFeO3 thin film using optical pump-probe and second harmonic generation measurements. Results of ultrafast electron diffraction with <100 fs time resolution and theoretical study reveal that the localized photocarrier strongly couples with the lattice structure and becomes the origin for the observed sudden change in the electric dipole. In addition, the subsequent structural dynamics involve a strong oscillation with a frequency of ~3.3 THz despite a poor structural symmetry change. Based on a theoretical calculation, this oscillation can be attributed to an unexpectedly softened new phonon mode generated by mixing essential two phonon modes governing the multiferroic (ferroelectric and antiferromagnetic) nature of BiFeO3 in the ground state due to strong coupling with a localized photocarrier. The comprehensive study shows that injection of the localized photocarrier strongly coupled with the lattice vibration mode can simultaneously realize the ultrafast switching of electric dipoles and magnetic interaction at once, even at room temperature, without modifying the long-range lattice structure. Ultrafast control of ferroelectricity and magnetism by light is essential for multifunctional devices. Here, photocarrier injection into multiferroic BiFeO3 thin films can simultaneously realize the ultrafast switching of electric dipoles and magnetic interaction due to the strong coupling between the localized photocarrier and lattice vibrations.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-9"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00698-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00698-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrafast control of ferroelectricity and magnetism by light is essential for future development in multiple functioning devices. Here, we demonstrate that the intense and ultrafast photo-modulation of the electric dipole can be realized by photocarrier injection into a multiferroic BiFeO3 thin film using optical pump-probe and second harmonic generation measurements. Results of ultrafast electron diffraction with <100 fs time resolution and theoretical study reveal that the localized photocarrier strongly couples with the lattice structure and becomes the origin for the observed sudden change in the electric dipole. In addition, the subsequent structural dynamics involve a strong oscillation with a frequency of ~3.3 THz despite a poor structural symmetry change. Based on a theoretical calculation, this oscillation can be attributed to an unexpectedly softened new phonon mode generated by mixing essential two phonon modes governing the multiferroic (ferroelectric and antiferromagnetic) nature of BiFeO3 in the ground state due to strong coupling with a localized photocarrier. The comprehensive study shows that injection of the localized photocarrier strongly coupled with the lattice vibration mode can simultaneously realize the ultrafast switching of electric dipoles and magnetic interaction at once, even at room temperature, without modifying the long-range lattice structure. Ultrafast control of ferroelectricity and magnetism by light is essential for multifunctional devices. Here, photocarrier injection into multiferroic BiFeO3 thin films can simultaneously realize the ultrafast switching of electric dipoles and magnetic interaction due to the strong coupling between the localized photocarrier and lattice vibrations.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信