Rafael O. Moreno-Tortolero, Juliusz Michalski, Eleanor Wells, Flora Gibb, Nick Skaer, Robert Walker, Louise Serpell, Chris Holland, Sean A. Davis
{"title":"Manipulating the water–air interface to drive protein assembly for functional silk-like fibroin fibre production","authors":"Rafael O. Moreno-Tortolero, Juliusz Michalski, Eleanor Wells, Flora Gibb, Nick Skaer, Robert Walker, Louise Serpell, Chris Holland, Sean A. Davis","doi":"10.1038/s43246-024-00722-x","DOIUrl":"10.1038/s43246-024-00722-x","url":null,"abstract":"Silk’s remarkable properties arise from its hierarchical structure, formed through natural transformation from an aqueous solution to a solid fibre driven by pH and flow stress under low-energy conditions. In contrast, artificial silk fabrication typically relies on extrusion-based methods using coagulating baths and unnatural solvents, limiting true biomimetic replication. Here, we find that native-like silk fibroin forms viscoelastic films at the air-water interface. Utilizing this, we demonstrate a mild, all-aqueous method to seamlessly pull silk-like fibres with co-aligned nanofibrillar bundles. The fiber structure transitioned from hexagonally packed β-solenoid units at low pulling speeds to β-sheet-rich structures at higher speeds. Fibers pulled near physiological speeds (26.3 mm s-¹) exhibited optimal mechanical properties, with an elastic modulus of 8 ± 1 GPa and toughness of 8 ± 5 MJ m-³, comparable to natural silk. This platform also enables embedding nanoparticles and biologics, offering broad applications in sensors, biocatalysis, and tissue engineering, expanding the potential of silk-based composite materials. Artificial silk fabrication relies on extrusion-based methods that lack true biomimetic replication. Here, silk-like fibres composed of co-aligned nanofibrillar bundles are pulled from films produced at the air-water interface","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-10"},"PeriodicalIF":7.5,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00722-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142880578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Henksmeier, P. Mahler, A. Wolff, D. Deutsch, M. Voigt, L. Ruhm, A. M. Sanchez, D. J. As, G. Grundmeier, D. Reuter
{"title":"Low-temperature fabrication of amorphous carbon films as a universal template for remote epitaxy","authors":"T. Henksmeier, P. Mahler, A. Wolff, D. Deutsch, M. Voigt, L. Ruhm, A. M. Sanchez, D. J. As, G. Grundmeier, D. Reuter","doi":"10.1038/s43246-024-00718-7","DOIUrl":"10.1038/s43246-024-00718-7","url":null,"abstract":"Recently, remote epitaxy has been explored for the fabrication of freestanding semiconductor membranes and substrate re-use. For remote epitaxy a thin 2D material layer is either manually transferred to a substrate or grown directly on a substrate at high temperature, thus limiting the process scalability or the choice of substrates. Here, we report on the low-temperature deposition (300 °C) of ultrathin sp2-hybridized 2D amorphous carbon layers with roughness ≤0.3 nm on III-V semiconductor substrates by plasma-enhanced chemical vapor deposition as a universal template for remote epitaxy. We present growth and detailed characterization of 2D amorphous carbon layers on various host substrates and their subsequent remote epitaxial overgrowth by solid-source molecular beam epitaxy. We observe that a low-temperature nucleation step is favorable for nucleation of III-V material growth on amorphous carbon coated substrates. Under optimized preparation conditions, we obtain high-quality, single-crystalline GaAs, cubic-AlN, cubic-GaN and $${{rm{I}}}{{{rm{n}}}}_{{{rm{x}}}}{{{rm{Ga}}}}_{1-{{rm{x}}}}{{rm{As}}}$$ layers on GaAs, 3C-SiC and InP carbon-coated (001)-oriented substrates. Our results demonstrate a universal template fabrication process for remote epitaxy. Remote epitaxy is used to grow semiconductor structures on 2D material covered substrates. Here, a method for fabricating ultrathin 2D amorphous carbon layers on III-V semiconductors is demonstrated using plasma-enhanced chemical vapor deposition as a universal template for remote epitaxy.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-12"},"PeriodicalIF":7.5,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00718-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Camille M. Bernal-Choban, Vladimir Ladygin, Garrett E. Granroth, Claire N. Saunders, Stefan H. Lohaus, Douglas L. Abernathy, Jiao YY. Lin, Brent Fultz
{"title":"Atomistic origin of the entropy of melting from inelastic neutron scattering and machine learned molecular dynamics","authors":"Camille M. Bernal-Choban, Vladimir Ladygin, Garrett E. Granroth, Claire N. Saunders, Stefan H. Lohaus, Douglas L. Abernathy, Jiao YY. Lin, Brent Fultz","doi":"10.1038/s43246-024-00695-x","DOIUrl":"10.1038/s43246-024-00695-x","url":null,"abstract":"The latent heat, L, is central to melting, but its atomic origin remains elusive. It is proportional to the entropy of fusion, ΔSfus = L/Tm (Tm is the melting temperature), which depends on changes of atom configurations, atom vibrations, and thermal electron excitations. Here, we combine inelastic neutron scattering and machine-learned molecular dynamics to separate ΔSfus into these components for Ge, Si, Bi, Sn, Pb, and Li. When the vibrational entropy of melting, ΔSvib, is zero, ΔSfus ≃ 1.2 kB per atom. This result provides a baseline for ΔSconfig and nearly coincides with “Richard’s Rule” of melting. The ΔSfus deviates from this value for most elements, however, and we show that this deviation originates with extra ΔSvib and extra ΔSconfig. These two components are correlated for positive and negative deviations from Richard’s rule – the extra ΔSconfig is consistently ~ 80% of ΔSvib. Our results, interpreted with potential energy landscape theory, imply a correlation between the change in the number of basins and the change in the inverse of their curvature for the melting of pure elements. The atomistic components that drive entropy of fusion and ultimately characterize latent heat of melting are not well defined. Here, inelastic neutron scattering and machine-learned molecular dynamics are used to quantify these thermodynamic contributions to the entropy of fusion in pure elements.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-12"},"PeriodicalIF":7.5,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00695-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bin He, Mengyu Yao, Yu Pan, Kathryn E. Arpino, Dong Chen, Federico M. Serrano-Sanchez, Sailong Ju, Ming Shi, Yan Sun, Claudia Felser
{"title":"Enhanced Weyl semimetal signature in Co3Sn2S2 Kagome ferromagnet by chlorine doping","authors":"Bin He, Mengyu Yao, Yu Pan, Kathryn E. Arpino, Dong Chen, Federico M. Serrano-Sanchez, Sailong Ju, Ming Shi, Yan Sun, Claudia Felser","doi":"10.1038/s43246-024-00720-z","DOIUrl":"10.1038/s43246-024-00720-z","url":null,"abstract":"Weyl fermions are chiral massless fermions with exotic properties. In the first established magnetic Weyl semimetal, Co3Sn2S2, a giant anomalous Hall effect has been observed, while its Fermi energy remaining 60 meV from the Weyl points. Shifting the Fermi energy closer to the Weyl points may assist in the identification of Weyl Fermion related transport signatures. Here we show that effective chlorine doping has resulted in a shift of the Fermi energy by 15 meV towards the Weyl points, which is confirmed by a combination of the systematic angular-resolved photoemission spectroscopy measurements and density function theory calculations. A five-fold reduction in resistivity is observed in the ferromagnetic phase, accompanied by a pronounced magnetoresistance of over 150%. The anomalous Hall conductivity shows a peak of 1680 Scm−1 at 40 K, which is 30% higher than the undoped sample due to a stronger Weyl point contribution. This work demonstrates the essential role of doping in Co3Sn2S2 for an enhanced Weyl semimetal signature. Weyl fermions are chiral massless fermions with interesting exotic properties. Here, chlorine doping of Co3Sn2S2 single crystals is found to shift the Fermi energy towards the Weyl points, enhancing its Weyl semimetal signatures such as a ninefold increase in magnetoresistance and a significantly larger anomalous Hall conductivity.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-7"},"PeriodicalIF":7.5,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00720-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Data extraction from polymer literature using large language models","authors":"Sonakshi Gupta, Akhlak Mahmood, Pranav Shetty, Aishat Adeboye, Rampi Ramprasad","doi":"10.1038/s43246-024-00708-9","DOIUrl":"10.1038/s43246-024-00708-9","url":null,"abstract":"Automated data extraction from materials science literature at scale using artificial intelligence and natural language processing techniques is critical to advance materials discovery. However, this process for large spans of text continues to be a challenge due to the specific nature and styles of scientific manuscripts. In this study, we present a framework to automatically extract polymer-property data from full-text journal articles using commercially available (GPT-3.5) and open-source (LlaMa 2) large language models (LLM), in tandem with the named entity recognition (NER)-based MaterialsBERT model. Leveraging a corpus of ~ 2.4 million full text articles, our method successfully identified and processed around 681,000 polymer-related articles, resulting in the extraction of over one million records corresponding to 24 properties of over 106,000 unique polymers. We additionally conducted an extensive evaluation of the performance and associated costs of the LLMs used for data extraction, compared to the NER model. We suggest methodologies to optimize costs, provide insights on effective inference via in-context few-shots learning, and illuminate gaps and opportunities for future studies utilizing LLMs for natural language processing in polymer science. The extracted polymer-property data has been made publicly available for the wider scientific community via the Polymer Scholar website. Automated data extraction from materials science literature using artificial intelligence and natural language processing techniques is key to advance materials discovery. Here, the authors present a framework to automatically extract polymer-property data from full-text journal articles using commercially available and open-source large language models.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-11"},"PeriodicalIF":7.5,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00708-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuanfang Ai, Na Zheng, Wenbo Liu, Ping Yang, Xi Wu, Yichen Tian, Chuyi Wang, Heyang Liu, Chongping Huang, Zhongli Liang, Feng Zhu, Longcheng Tang, Nanbiao Ye, Jianjun Li, Kun Cao
{"title":"Gelatin-based spray for forest fire prevention and fertilization","authors":"Yuanfang Ai, Na Zheng, Wenbo Liu, Ping Yang, Xi Wu, Yichen Tian, Chuyi Wang, Heyang Liu, Chongping Huang, Zhongli Liang, Feng Zhu, Longcheng Tang, Nanbiao Ye, Jianjun Li, Kun Cao","doi":"10.1038/s43246-024-00712-z","DOIUrl":"10.1038/s43246-024-00712-z","url":null,"abstract":"Frequent forest fires, driven by hotter and drier climates, threaten biodiversity and human health, causing significant economic losses, air pollution, soil erosion, and degeneration. Current active and passive fire protection methods often suffer from environmental pollution, poor flexibility, and limited availability in remote areas. However, fast-acting surface flame retardants for passive forest fire protection, particularly for foliage, are rare. Herein, we report an easily obtainable gelatin-based fire spray, which resulted in 1.8 and 16.3-fold extension in ignition time, 34% and 39% reductions in total heat release, 78% and 92% reductions in fire growth index for dead and fresh leaves, respectively. After the fire warning is suppressed, for instance by rain, the sprayed substances can decompose and provide nitrogen and phosphorus as leaf and soil fertilizers without affecting soil microbial function, which increase plant net photosynthesis by 84% and effective nitrogen and phosphorus by 664% and 140%, respectively. Our green flame retardant and fertilizer material allows for simultaneous tree fire protection and growth. Forest fire prevention methods are often not environmentally friendly and are limited in remote areas. Here, a gelatin-based fire spray extends ignition time and reduces the heat release of fires while also acting as leaf and soil fertilizers to aid plant growth.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-8"},"PeriodicalIF":7.5,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00712-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arnau Romaguera, Oscar Fabelo, Navid Qureshi, J. Alberto Rodríguez-Velamazán, José Luis García-Muñoz
{"title":"Evidence of high-temperature magnetic spiral in YBaCuFeO5 single-crystal by spherical neutron polarimetry","authors":"Arnau Romaguera, Oscar Fabelo, Navid Qureshi, J. Alberto Rodríguez-Velamazán, José Luis García-Muñoz","doi":"10.1038/s43246-024-00710-1","DOIUrl":"10.1038/s43246-024-00710-1","url":null,"abstract":"The low ordering temperature of most non-collinear spiral magnets critically limits their implementation in devices. The layered perovskites RBaCuFeO5 are a rare case of frustrated oxide family that has raised great expectations as promising high-temperature spiral magnets and spin-driven multiferroic candidates. Though a non-conventional mechanism of ‘spiral order by disorder’ could account for the extraordinary thermal stability of their presumed spiral order, such order was alleged on the basis of non-conclusive neutron data on powder samples. Thus far, it has not yet received support from single-crystal studies able to lift the ambiguities of powder data. Here, a YBaCuFeO5 crystal has been grown with enough Cu/Fe disorder to stabilize the incommensurate magnetic phase up to TS ≈ 200 K. Utilizing spherical neutron polarimetry and single-crystal neutron diffraction, we unveil the features of its magnetic structures, demonstrating the non-collinear chiral nature of the magnetic domains in the singular incommensurate phase. It is thus finally proved that such phase is spiral in our crystal, and therefore also in those compositions of this perovskite family where TS values well above room temperature have been reported. Yet, this study also illustrates critical features of relevance to the search for high-temperature magnetoelectric response induced by the spiral phase. While promising for spintronics, most non-collinear spiral magnets have low ordering temperatures which limit their implementation in devices. Here, spherical neutron polarimetry and single-crystal neutron diffraction data demonstrate the non-collinear chiral nature of magnetic order in YBaCuFeO5 single crystals up to 200 K.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-13"},"PeriodicalIF":7.5,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00710-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jack R. Grimm, Cameron Renteria, Semanti Mukhopadhyay, Arun Devaraj, Dwayne D. Arola
{"title":"Stratification of fluoride uptake among enamel crystals with age elucidated by atom probe tomography","authors":"Jack R. Grimm, Cameron Renteria, Semanti Mukhopadhyay, Arun Devaraj, Dwayne D. Arola","doi":"10.1038/s43246-024-00709-8","DOIUrl":"10.1038/s43246-024-00709-8","url":null,"abstract":"Dental enamel is subjected to a lifetime of de- and re-mineralization cycles in the oral environment, the cumulative effects of which cause embrittlement with age. However, the understanding of atomic scale mechanisms of dental enamel aging is still at its infancy, particularly regarding where compositional differences occur in the hydroxyapatite nanocrystals and what underlying mechanisms might be responsible. Here, we use atom probe tomography to compare enamel from a young (22 years old) and a senior (56 years old) adult donor tooth. Findings reveal that the concentration of fluorine is elevated in the shells of senior nanocrystals relative to young, with less significant differences between the cores or intergranular phases. It is proposed that the embrittlement of enamel is driven, at least in part, by the infusion of fluorine into the nanocrystals and that the principal mechanism is de- and re-mineralization cycles that preferentially erode and rebuild the nanocrystals shells. The atomic scale mechanisms of dental enamel aging are still not well understood. Here, atom probe tomography was used to compare enamel from young and senior adults to give insight about fluorine concentration in tooth nanocrystals.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-8"},"PeriodicalIF":7.5,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00709-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Achieving dynamic stability and electromechanical resilience for ultra-flexible battery technology","authors":"Sam Riley, Andrew Shevchuk, Chandramohan George","doi":"10.1038/s43246-024-00703-0","DOIUrl":"10.1038/s43246-024-00703-0","url":null,"abstract":"Despite the huge potential of mechanically flexible batteries in healthcare, robotics, transportation and sensing, their development towards real-world applications is stalled due to issues such as capacity decay, limited energy/power density at any given pliability, compromised safety and poor packaging. These issues originate from design flaws, electromechanical degradation and underdeveloped characterisation of composite electrodes, lacking direct correlations between mechanical flexibility and electrochemical performance. Here, we review the state-of-the-art advances in Li-based flexible electrodes, cell architectures and materials and discuss the correlations between electrode microstructure, electrochemical trends, mechanical pliability and safety, emphasising the need for improved metrology and standardisation quantifying electromechanical resiliency. Development of mechanically flexible batteries has stalled due to their capacity decay, limited power and energy, and safety issues. Here, advances in flexible electrodes and cell architectures across Li-based batteries are Reviewed, correlating microstructure, performance, mechanical pliability, and safety.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-14"},"PeriodicalIF":7.5,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00703-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabriel L. Murphy, Elena Bazarkina, André Rossberg, Clara L. Silva, Lucia Amidani, Andrey Bukaemskiy, Robert Thümmler, Martina Klinkenberg, Maximilian Henkes, Julien Marquardt, Jessica Lessing, Volodymyr Svitlyk, Christoph Hennig, Kristina O. Kvashnina, Nina Huittinen
{"title":"The role of redox and structure on grain growth in Mn-doped UO2","authors":"Gabriel L. Murphy, Elena Bazarkina, André Rossberg, Clara L. Silva, Lucia Amidani, Andrey Bukaemskiy, Robert Thümmler, Martina Klinkenberg, Maximilian Henkes, Julien Marquardt, Jessica Lessing, Volodymyr Svitlyk, Christoph Hennig, Kristina O. Kvashnina, Nina Huittinen","doi":"10.1038/s43246-024-00714-x","DOIUrl":"10.1038/s43246-024-00714-x","url":null,"abstract":"Mn-doped UO2 is considered a potential advanced nuclear fuel due to ameliorated microstructural grain growth compared to non-doped variants. However, recent experimental investigations have highlighted limitations in grain growth apparently arising from misunderstandings of its redox-structural chemistry. To resolve this, we use synchrotron X-ray diffraction and spectroscopy measurements supported by ab initio calculations to cross-examine the redox and structural chemistry of Mn-doped UO2 single crystal grains and ceramic specimens. Measurements reveal Mn enters the UO2 matrix divalently as $$({{{Mn}}}_{x}^{+2}{{U}}_{1-x}^{+4}){{O}_{2-x}}$$ with the additional formation of fluorite Mn+2O in the bulk material. Extended X-ray absorption near edge structure measurements unveil that during sintering, the isostructural relationship between fluorite UO2 and Mn+2O results in inadvertent interaction and subsequent incorporation of diffusing U species within MnO, rather than neighbouring UO2 grains, inhibiting grain growth. The investigation consequently highlights the significance of considering total redox-structural chemistry of main and minor phases in advanced ceramic material design. Mn-doped UO2 is a promising nuclear fuel, and is predicted to undergo favourable grain growth during service. This study uses diffraction, spectroscopy and ab initio calculations to study the effect of redox and structure, finding that grain growth may in fact be suppressed.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-12"},"PeriodicalIF":7.5,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00714-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}