Data extraction from polymer literature using large language models

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sonakshi Gupta, Akhlak Mahmood, Pranav Shetty, Aishat Adeboye, Rampi Ramprasad
{"title":"Data extraction from polymer literature using large language models","authors":"Sonakshi Gupta, Akhlak Mahmood, Pranav Shetty, Aishat Adeboye, Rampi Ramprasad","doi":"10.1038/s43246-024-00708-9","DOIUrl":null,"url":null,"abstract":"Automated data extraction from materials science literature at scale using artificial intelligence and natural language processing techniques is critical to advance materials discovery. However, this process for large spans of text continues to be a challenge due to the specific nature and styles of scientific manuscripts. In this study, we present a framework to automatically extract polymer-property data from full-text journal articles using commercially available (GPT-3.5) and open-source (LlaMa 2) large language models (LLM), in tandem with the named entity recognition (NER)-based MaterialsBERT model. Leveraging a corpus of  ~ 2.4 million full text articles, our method successfully identified and processed around 681,000 polymer-related articles, resulting in the extraction of over one million records corresponding to 24 properties of over 106,000 unique polymers. We additionally conducted an extensive evaluation of the performance and associated costs of the LLMs used for data extraction, compared to the NER model. We suggest methodologies to optimize costs, provide insights on effective inference via in-context few-shots learning, and illuminate gaps and opportunities for future studies utilizing LLMs for natural language processing in polymer science. The extracted polymer-property data has been made publicly available for the wider scientific community via the Polymer Scholar website. Automated data extraction from materials science literature using artificial intelligence and natural language processing techniques is key to advance materials discovery. Here, the authors present a framework to automatically extract polymer-property data from full-text journal articles using commercially available and open-source large language models.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-11"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00708-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00708-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Automated data extraction from materials science literature at scale using artificial intelligence and natural language processing techniques is critical to advance materials discovery. However, this process for large spans of text continues to be a challenge due to the specific nature and styles of scientific manuscripts. In this study, we present a framework to automatically extract polymer-property data from full-text journal articles using commercially available (GPT-3.5) and open-source (LlaMa 2) large language models (LLM), in tandem with the named entity recognition (NER)-based MaterialsBERT model. Leveraging a corpus of  ~ 2.4 million full text articles, our method successfully identified and processed around 681,000 polymer-related articles, resulting in the extraction of over one million records corresponding to 24 properties of over 106,000 unique polymers. We additionally conducted an extensive evaluation of the performance and associated costs of the LLMs used for data extraction, compared to the NER model. We suggest methodologies to optimize costs, provide insights on effective inference via in-context few-shots learning, and illuminate gaps and opportunities for future studies utilizing LLMs for natural language processing in polymer science. The extracted polymer-property data has been made publicly available for the wider scientific community via the Polymer Scholar website. Automated data extraction from materials science literature using artificial intelligence and natural language processing techniques is key to advance materials discovery. Here, the authors present a framework to automatically extract polymer-property data from full-text journal articles using commercially available and open-source large language models.

Abstract Image

使用大型语言模型从聚合物文献中提取数据
利用人工智能和自然语言处理技术从材料科学文献中大规模自动提取数据对于推进材料发现至关重要。然而,由于科学手稿的特定性质和风格,对于大跨度的文本来说,这一过程仍然是一个挑战。在这项研究中,我们提出了一个框架,使用商用(GPT-3.5)和开源(LlaMa 2)大型语言模型(LLM),以及基于命名实体识别(NER)的MaterialsBERT模型,从全文期刊文章中自动提取聚合物性质数据。利用240万篇全文文章的语料库,我们的方法成功地识别和处理了大约681,000篇与聚合物相关的文章,从而提取了超过100万条记录,对应超过106,000种独特聚合物的24种性质。此外,与NER模型相比,我们还对用于数据提取的llm的性能和相关成本进行了广泛的评估。我们提出了优化成本的方法,通过上下文少镜头学习提供有效推理的见解,并阐明了利用llm进行聚合物科学自然语言处理的未来研究的差距和机会。提取的聚合物性能数据已通过高分子学者网站公开提供给更广泛的科学界。利用人工智能和自然语言处理技术从材料科学文献中自动提取数据是推进材料发现的关键。在这里,作者提出了一个框架,使用商业上可用的和开源的大型语言模型,从全文期刊文章中自动提取聚合物属性数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信