Low-temperature fabrication of amorphous carbon films as a universal template for remote epitaxy

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
T. Henksmeier, P. Mahler, A. Wolff, D. Deutsch, M. Voigt, L. Ruhm, A. M. Sanchez, D. J. As, G. Grundmeier, D. Reuter
{"title":"Low-temperature fabrication of amorphous carbon films as a universal template for remote epitaxy","authors":"T. Henksmeier, P. Mahler, A. Wolff, D. Deutsch, M. Voigt, L. Ruhm, A. M. Sanchez, D. J. As, G. Grundmeier, D. Reuter","doi":"10.1038/s43246-024-00718-7","DOIUrl":null,"url":null,"abstract":"Recently, remote epitaxy has been explored for the fabrication of freestanding semiconductor membranes and substrate re-use. For remote epitaxy a thin 2D material layer is either manually transferred to a substrate or grown directly on a substrate at high temperature, thus limiting the process scalability or the choice of substrates. Here, we report on the low-temperature deposition (300 °C) of ultrathin sp2-hybridized 2D amorphous carbon layers with roughness ≤0.3 nm on III-V semiconductor substrates by plasma-enhanced chemical vapor deposition as a universal template for remote epitaxy. We present growth and detailed characterization of 2D amorphous carbon layers on various host substrates and their subsequent remote epitaxial overgrowth by solid-source molecular beam epitaxy. We observe that a low-temperature nucleation step is favorable for nucleation of III-V material growth on amorphous carbon coated substrates. Under optimized preparation conditions, we obtain high-quality, single-crystalline GaAs, cubic-AlN, cubic-GaN and $${{\\rm{I}}}{{{\\rm{n}}}}_{{{\\rm{x}}}}{{{\\rm{Ga}}}}_{1-{{\\rm{x}}}}{{\\rm{As}}}$$ layers on GaAs, 3C-SiC and InP carbon-coated (001)-oriented substrates. Our results demonstrate a universal template fabrication process for remote epitaxy. Remote epitaxy is used to grow semiconductor structures on 2D material covered substrates. Here, a method for fabricating ultrathin 2D amorphous carbon layers on III-V semiconductors is demonstrated using plasma-enhanced chemical vapor deposition as a universal template for remote epitaxy.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-12"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00718-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00718-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, remote epitaxy has been explored for the fabrication of freestanding semiconductor membranes and substrate re-use. For remote epitaxy a thin 2D material layer is either manually transferred to a substrate or grown directly on a substrate at high temperature, thus limiting the process scalability or the choice of substrates. Here, we report on the low-temperature deposition (300 °C) of ultrathin sp2-hybridized 2D amorphous carbon layers with roughness ≤0.3 nm on III-V semiconductor substrates by plasma-enhanced chemical vapor deposition as a universal template for remote epitaxy. We present growth and detailed characterization of 2D amorphous carbon layers on various host substrates and their subsequent remote epitaxial overgrowth by solid-source molecular beam epitaxy. We observe that a low-temperature nucleation step is favorable for nucleation of III-V material growth on amorphous carbon coated substrates. Under optimized preparation conditions, we obtain high-quality, single-crystalline GaAs, cubic-AlN, cubic-GaN and $${{\rm{I}}}{{{\rm{n}}}}_{{{\rm{x}}}}{{{\rm{Ga}}}}_{1-{{\rm{x}}}}{{\rm{As}}}$$ layers on GaAs, 3C-SiC and InP carbon-coated (001)-oriented substrates. Our results demonstrate a universal template fabrication process for remote epitaxy. Remote epitaxy is used to grow semiconductor structures on 2D material covered substrates. Here, a method for fabricating ultrathin 2D amorphous carbon layers on III-V semiconductors is demonstrated using plasma-enhanced chemical vapor deposition as a universal template for remote epitaxy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信