RSC Mechanochemistry最新文献

筛选
英文 中文
Enhanced HP1α homodimer interaction via force-induced salt bridge formation: implications for chromatin crosslinking and phase separation† 通过力诱导盐桥形成增强HP1α同源二聚体相互作用:对染色质交联和相分离的影响†
RSC Mechanochemistry Pub Date : 2024-02-13 DOI: 10.1039/D3MR00011G
Shingo Tsukamoto, Mohammad Khavani, Nya Domkam and Mohammad R. K. Mofrad
{"title":"Enhanced HP1α homodimer interaction via force-induced salt bridge formation: implications for chromatin crosslinking and phase separation†","authors":"Shingo Tsukamoto, Mohammad Khavani, Nya Domkam and Mohammad R. K. Mofrad","doi":"10.1039/D3MR00011G","DOIUrl":"https://doi.org/10.1039/D3MR00011G","url":null,"abstract":"<p >Recent studies have underscored the potential role of Heterochromatin Protein 1α (HP1α) in chromatin crosslinking, phase separation, and the orchestration of nuclear mechanics. One of the cornerstones of HP1α functionality lies in its homodimerization through the chromoshadow domain (CSD), which is crucial for these processes. Nevertheless, it has remained unknown how HP1α can foster condensations responding to mechanical force and induce phase separation in the mechanically unfavorable heterochromatin region. To elucidate the biophysical basis of HP1α, we used full atomistic molecular dynamics (MD) simulations, focusing on the CSD–CSD dimer of HP1α under a pulling force. Notably, force application resulted in a stronger, more stable interaction at the α-helix interface of the CSD–CSD. This enhanced interaction was attributed to a force-induced salt bridge formation on the α-helix interface, emerging from an angle alteration of a lysine residue that enables closer proximity to a glutamic acid residue on the paired CSD. This study reveals an intriguing facet of HP1α mechanics: its mechanical sensitivity, wherein dimerization strength is enhanced by mechanical force. The molecular dynamics of the CSD–CSD dimer under force provide novel insights into HP1α mechanics, contributing to our understanding of chromatin mechanics and phase separation.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d3mr00011g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140114120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theory of flow-induced covalent polymer mechanochemistry in dilute solutions† 稀溶液中流动诱导共价聚合物机械化学理论†.
RSC Mechanochemistry Pub Date : 2024-02-06 DOI: 10.1039/D3MR00009E
Etienne Rognin, Niamh Willis-Fox and Ronan Daly
{"title":"Theory of flow-induced covalent polymer mechanochemistry in dilute solutions†","authors":"Etienne Rognin, Niamh Willis-Fox and Ronan Daly","doi":"10.1039/D3MR00009E","DOIUrl":"https://doi.org/10.1039/D3MR00009E","url":null,"abstract":"<p >Predicting polymer mechanochemistry in arbitrary flows is challenging due to the diversity of chain conformations, competition among stretched bonds, and flow heterogeneity. Here, we demonstrate that the vast diversity of polymer unravelling pathways must be accounted for, rather than considering an averaged chain conformation. We propose a model that describes both mechanophore activation and non-specific backbone scission, where the reaction rates depend solely on fluid kinematics. Validated with coarse-grained molecular dynamics simulations in complex flows, the model captures mechanochemistry onset, intact chain half-life, and non-specific scission.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d3mr00009e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140114106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Systematic investigation of the mechanocatalytic partial depolymerization of cellulose towards oligomeric glycans 对纤维素在机械催化下部分解聚成低聚糖的系统研究
RSC Mechanochemistry Pub Date : 2024-02-05 DOI: 10.1039/D3MR00005B
Gregor Meyer, Dominique Lumpp, Anne-Kathrin Stulik, Dagmar Hoffmann and Marcus Rose
{"title":"Systematic investigation of the mechanocatalytic partial depolymerization of cellulose towards oligomeric glycans","authors":"Gregor Meyer, Dominique Lumpp, Anne-Kathrin Stulik, Dagmar Hoffmann and Marcus Rose","doi":"10.1039/D3MR00005B","DOIUrl":"https://doi.org/10.1039/D3MR00005B","url":null,"abstract":"<p >The selective depolymerization of cellulose is a major challenge and usually leads to the formation of monosaccharides as main products. Once depolymerized, various platform chemicals such as 5-hydroxymethylfurfural and furfural can be obtained from cellulose. Our work aims to convert cellulose selectively into oligomeric glycans as more valuable products compared to sugars, by using mechanocatalysis in a planetary ball mill. In this work, reaction parameters such as acid content, filling level, rotational speed and grinding duration were investigated systematically and optimized towards a maximum amount of soluble oligomeric species and a minimum of monosaccharides. The systematic investigation of the mechanocatalytic partial depolymerization resulted in a nearly full-soluble fraction containing oligomeric glycans.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d3mr00005b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140114105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In situ investigation of controlled polymorphism in mechanochemistry at elevated temperature† 原位研究高温† 机械化学中的受控多态性
RSC Mechanochemistry Pub Date : 2024-01-31 DOI: 10.1039/D3MR00019B
Kevin Linberg, Philipp C. Sander, Franziska Emmerling and Adam A. L. Michalchuk
{"title":"In situ investigation of controlled polymorphism in mechanochemistry at elevated temperature†","authors":"Kevin Linberg, Philipp C. Sander, Franziska Emmerling and Adam A. L. Michalchuk","doi":"10.1039/D3MR00019B","DOIUrl":"https://doi.org/10.1039/D3MR00019B","url":null,"abstract":"<p >Mechanochemistry routinely provides solid forms (polymorphs) that are difficult to obtain by conventional solution-based methods, making it an exciting tool for crystal engineering. However, we are far from identifying the full scope of mechanochemical strategies available to access new and potentially useful solid forms. Using the model organic cocrystal system of nicotinamide (NA) and pimelic acid (PA), we demonstrate with variable temperature ball milling that ball milling seemingly decreases the temperature needed to induce polymorph conversion. Whereas <strong>Form I</strong> of the NA:PA cocrystal transforms into <strong>Form II</strong> at 90 °C under equilibrium conditions, the same transition occurs as low as 65 °C during ball milling: a <em>ca</em> 25 °C reduction of the transition temperature. Our results indicate that mechanical energy provides a powerful control parameter to access new solid forms under more readily accessible conditions. We expect this ‘thermo-mechanical’ approach for driving polymorphic transformations to become an important tool for polymorph screening and manufacturing.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d3mr00019b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140114109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Halogen-bonded cocrystals via resonant acoustic mixing† 通过共振声混合实现卤键共晶体
RSC Mechanochemistry Pub Date : 2024-01-31 DOI: 10.1039/D3MR00028A
Alireza Nari, Jeffrey S. Ovens and David L. Bryce
{"title":"Halogen-bonded cocrystals via resonant acoustic mixing†","authors":"Alireza Nari, Jeffrey S. Ovens and David L. Bryce","doi":"10.1039/D3MR00028A","DOIUrl":"https://doi.org/10.1039/D3MR00028A","url":null,"abstract":"<p >Resonant acoustic mixing is a relatively gentle mechanochemical technology that employs pressure waves to induce chemical and morphological transformations. We report here on the production of eleven halogen-bonded (XB) cocrystalline architectures <em>via</em> neat and liquid-assisted resonant acoustic mixing (RAM). Two strong iodinated XB donors, namely 1,4-diiodotetrafluorobenzene (<em>p</em>-DITFB, <strong>1</strong>) and 1,3,5-trifluoro-2,4,6-triiodobenzene (<em>sym</em>-TFTIB, <strong>2</strong>) each react with five XB donors, namely 2,3,5,6-tetramethylpyrazine (TMP, <strong>a</strong>), 4-dimethylaminopyridine (DMAP, <strong>b</strong>), 1,10-phenanthroline (<em>o</em>-Ph, <strong>c</strong>), 1,10-phenanthroline-5,6-dione (PheDON, <strong>d</strong>), and 4,5-diazafluoren-9-one (DIZFON, <strong>e</strong>) to form ten cocrystals. For these systems, it is shown that RAM is capable of producing the same products as are obtained <em>via</em> ball milling. Two novel cocrystals are obtained (of <strong>2d</strong> featuring bifurcated XBs, and <strong>2e</strong> featuring monofurcated XBs) and their single-crystal X-ray structures are reported. However, an eleventh stoichiomorphic cocrystal of <em>p</em>-DITFB and TMP is obtained exclusively <em>via</em> RAM, suggesting that the combination of RAM and milling approaches may afford a broader exploration of the polymorphic and stoichiomorphic landscape than the use of a single technique in isolation. All products are characterized <em>via</em> powder X-ray diffraction, and <small><sup>13</sup></small>C cross-polarization magic angle spinning (CP/MAS) and <small><sup>19</sup></small>F MAS NMR spectroscopy, providing further evidence for the phase purity of samples obtained from RAM experiments and for the degree of polymorphic control available when small volumes of liquid are employed in mechanochemical reactions. This work demonstrates the potential of RAM for the production of known and novel halogen-bonded cocrystalline assemblies, including polymorphic and stoichiomorphic structures.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d3mr00028a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140114110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iron-free mechanochemical limonene inverse vulcanization† 无铁机械化学柠檬烯反硫化†工艺
RSC Mechanochemistry Pub Date : 2024-01-29 DOI: 10.1039/D3MR00002H
Rima Tedjini, Raquel Viveiros, Teresa Casimiro and Vasco D. B. Bonifácio
{"title":"Iron-free mechanochemical limonene inverse vulcanization†","authors":"Rima Tedjini, Raquel Viveiros, Teresa Casimiro and Vasco D. B. Bonifácio","doi":"10.1039/D3MR00002H","DOIUrl":"https://doi.org/10.1039/D3MR00002H","url":null,"abstract":"<p >An iron-free mechanochemical-assisted limonene inverse vulcanization is reported. The process makes use of only limonene and sulphur, industrial waste by-products, under mild conditions (<em>ca.</em> 40 °C) and short time (2 h) using a zirconium oxide reactor and a planetary ball mil. The obtained high value products are light yellow solids, readily soluble in chloroform, optically active oligosulfides, which are different from polysulfides reported under conventional conditions (<em>ca.</em> 185 °C), as confirmed by NMR spectroscopy and mass spectrometry. A general reaction mechanism is proposed, initiated by homolytic sulphur ring opening triggered by mechanical stress, and involving thiirane intermediates, <em>via</em> an addition–elimination reaction of sulphur to the limonene double bonds.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d3mr00002h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140924787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Base-mediated trimerization of enones under solvent-free and ball-milling conditions† 无溶剂和球磨条件下基介导的烯酮三聚反应†。
RSC Mechanochemistry Pub Date : 2024-01-29 DOI: 10.1039/D3MR00010A
Gang Shao, Pinhua Li, Zheng-Chun Yin, Jun-Shen Chen, Xu-Ling Xia and Guan-Wu Wang
{"title":"Base-mediated trimerization of enones under solvent-free and ball-milling conditions†","authors":"Gang Shao, Pinhua Li, Zheng-Chun Yin, Jun-Shen Chen, Xu-Ling Xia and Guan-Wu Wang","doi":"10.1039/D3MR00010A","DOIUrl":"https://doi.org/10.1039/D3MR00010A","url":null,"abstract":"<p >An efficient mechanochemical trimerization of enones with KO<small><sup><em>t</em></sup></small>Bu as the base and water as the proton source under solvent-free and ambient conditions has been developed. This protocol provides novel, simple, rapid and scalable access to 1,3,5-triaryl-2,4-acyl-cyclohexanols, which exist as chair conformations with all bulky substituents located at equatorial positions. In addition, the formed cyclohexanol derivatives can be further dehydrated to afford the corresponding cyclohexene derivatives with β,γ-unsaturation. By changing the type or amount of the employed base, another type of stereoisomer, where the 4-acyl group is situated at the axial position, can be favorably generated as the major product.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d3mr00010a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140924785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of α-ketothioamides with elemental sulfur under solvent-free conditions in a mixer mill† 在无溶剂条件下用元素硫在混合磨中合成 α-硫代酮酰胺†。
RSC Mechanochemistry Pub Date : 2024-01-29 DOI: 10.1039/D3MR00025G
Chandan Chittapriya Sahu, Sourav Biswas, Renè Hommelsheim and Carsten Bolm
{"title":"Synthesis of α-ketothioamides with elemental sulfur under solvent-free conditions in a mixer mill†","authors":"Chandan Chittapriya Sahu, Sourav Biswas, Renè Hommelsheim and Carsten Bolm","doi":"10.1039/D3MR00025G","DOIUrl":"https://doi.org/10.1039/D3MR00025G","url":null,"abstract":"<p >A mechanochemical base-mediated synthesis of α-ketothioamide from readily available acetophenone derivatives is developed. The reaction is metal-free, solventless, and proceeds in a short reaction time. Importantly, the products differ from those formed under standard solution-based protocols.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d3mr00025g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140114108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visualization of mechanochemical polymer-chain scission in double-network elastomers using a radical-transfer-type fluorescent molecular probe† 利用自由基转移型荧光分子探针观察双网弹性体中的机械化学聚合物链断裂†。
RSC Mechanochemistry Pub Date : 2024-01-29 DOI: 10.1039/D3MR00016H
Takumi Yamamoto, Akira Takahashi and Hideyuki Otsuka
{"title":"Visualization of mechanochemical polymer-chain scission in double-network elastomers using a radical-transfer-type fluorescent molecular probe†","authors":"Takumi Yamamoto, Akira Takahashi and Hideyuki Otsuka","doi":"10.1039/D3MR00016H","DOIUrl":"https://doi.org/10.1039/D3MR00016H","url":null,"abstract":"<p >Double-network (DN) elastomers are renowned for combining stiffness and toughness. Their exceptional physical properties have garnered significant attention in recent years. However, the fracture phenomena in DN elastomers are much less understood than those in DN gels due to the limited scope of visualization methods. Here, we demonstrate the visualization of sacrificial bond cleavage in DN elastomers during elongation by adding a diarylacetonitrile (<strong>DAAN</strong>) derivative as a radical-transfer-type fluorescent molecular probe, which enables the visualization of polymer-chain scission without altering the mechanical properties. A tensile test of the DN elastomers that contain <strong>DAAN</strong> revealed that mechanoradicals are generated from the entire elongated region of the elastomers in the strain-hardening region. In contrast, DN gels generate mechanoradicals only at the necked region. This method is expected to accelerate the investigation of the fracture properties of various DN elastomers.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d3mr00016h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140114111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Index 指数
RSC Mechanochemistry Pub Date : 2020-12-07 DOI: 10.1515/9783110608335-007
{"title":"Index","authors":"","doi":"10.1515/9783110608335-007","DOIUrl":"https://doi.org/10.1515/9783110608335-007","url":null,"abstract":"","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88609516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信