Davide Ceriotti, Piergiorgio Marziani, Federico Maria Scesa, Arianna Collorà, Claudia L. Bianchi, Luca Magagnin and Maurizio Sansotera
{"title":"氟化包晶 KCuF3 和 KNiF3† 的机械化学合成","authors":"Davide Ceriotti, Piergiorgio Marziani, Federico Maria Scesa, Arianna Collorà, Claudia L. Bianchi, Luca Magagnin and Maurizio Sansotera","doi":"10.1039/D4MR00037D","DOIUrl":null,"url":null,"abstract":"<p >A solvent-free mechanochemical synthesis of two fluorinated perovskites, KCuF<small><sub>3</sub></small> and KNiF<small><sub>3</sub></small>, including the optimization of milling time at constant rotational speed, was studied as a practical and green alternative to the classical solvothermal synthesis. The presence of KCuF<small><sub>3</sub></small> and KNiF<small><sub>3</sub></small> in the desired crystalline phase as the main product was observed after 6 h of milling. At higher milling times K<small><sub>2</sub></small>CuF<small><sub>4</sub></small> and K<small><sub>2</sub></small>NiF<small><sub>4</sub></small> were detected as additional crystalline phases for the Cu- and Ni- based perovskites, respectively. The fluorinated perovskites were characterized by using X-Ray Powder Diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM), confirming the selective formation of the fluorinated perovskites. The mechanochemical route was also compared to a new mild solvothermal method. An evaluation of the environmental impact and the energy efficiency was performed; moreover, the effectiveness of the mechanochemical process was compared to that of the solvothermal method. The promising results obtained from this innovative method opened the door to the use of solvent-free mechanochemical syntheses as a suitable approach in the field of crystal engineering also.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d4mr00037d?page=search","citationCount":"0","resultStr":"{\"title\":\"Mechanochemical synthesis of fluorinated perovskites KCuF3 and KNiF3†\",\"authors\":\"Davide Ceriotti, Piergiorgio Marziani, Federico Maria Scesa, Arianna Collorà, Claudia L. Bianchi, Luca Magagnin and Maurizio Sansotera\",\"doi\":\"10.1039/D4MR00037D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A solvent-free mechanochemical synthesis of two fluorinated perovskites, KCuF<small><sub>3</sub></small> and KNiF<small><sub>3</sub></small>, including the optimization of milling time at constant rotational speed, was studied as a practical and green alternative to the classical solvothermal synthesis. The presence of KCuF<small><sub>3</sub></small> and KNiF<small><sub>3</sub></small> in the desired crystalline phase as the main product was observed after 6 h of milling. At higher milling times K<small><sub>2</sub></small>CuF<small><sub>4</sub></small> and K<small><sub>2</sub></small>NiF<small><sub>4</sub></small> were detected as additional crystalline phases for the Cu- and Ni- based perovskites, respectively. The fluorinated perovskites were characterized by using X-Ray Powder Diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM), confirming the selective formation of the fluorinated perovskites. The mechanochemical route was also compared to a new mild solvothermal method. An evaluation of the environmental impact and the energy efficiency was performed; moreover, the effectiveness of the mechanochemical process was compared to that of the solvothermal method. The promising results obtained from this innovative method opened the door to the use of solvent-free mechanochemical syntheses as a suitable approach in the field of crystal engineering also.</p>\",\"PeriodicalId\":101140,\"journal\":{\"name\":\"RSC Mechanochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d4mr00037d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Mechanochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/mr/d4mr00037d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Mechanochemistry","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/mr/d4mr00037d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mechanochemical synthesis of fluorinated perovskites KCuF3 and KNiF3†
A solvent-free mechanochemical synthesis of two fluorinated perovskites, KCuF3 and KNiF3, including the optimization of milling time at constant rotational speed, was studied as a practical and green alternative to the classical solvothermal synthesis. The presence of KCuF3 and KNiF3 in the desired crystalline phase as the main product was observed after 6 h of milling. At higher milling times K2CuF4 and K2NiF4 were detected as additional crystalline phases for the Cu- and Ni- based perovskites, respectively. The fluorinated perovskites were characterized by using X-Ray Powder Diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM), confirming the selective formation of the fluorinated perovskites. The mechanochemical route was also compared to a new mild solvothermal method. An evaluation of the environmental impact and the energy efficiency was performed; moreover, the effectiveness of the mechanochemical process was compared to that of the solvothermal method. The promising results obtained from this innovative method opened the door to the use of solvent-free mechanochemical syntheses as a suitable approach in the field of crystal engineering also.